Cost-Effective Real-Time Aerial Surveillance System Using Edge Computing

Author(s):  
Md. Shahzad Alam ◽  
Sujit Kumar Gupta
2021 ◽  
Vol 4 ◽  
Author(s):  
Clemence Koren ◽  
David Swanson ◽  
Gry Grøneng ◽  
Gunnar Rø ◽  
Petter Hopp ◽  
...  

Sykdomspulsen is a real time surveillance system developed by the Norwegian Institute of Public Health (NIPH) for One Health surveillance and the surveillance of other infectious diseases in humans like respiratory diseases and lately covid-19. The One Health surveillance comprise of Campylobacter data from humans and chicken farms and also includes diagnosis codes from doctor appointments and weather data with analysis forecasting outbreaks in Norway. It is a joint project between the Norwegian Institute of Public Health (NIPH) and the Norwegian Veterinary Institute (NVI), under the framework of the OHEJP NOVA (Novel approaches for design and evaluation of cost-effective surveillance across the food chain) and MATRIX (Connecting dimensions in One-Health surveillance) projects. The system relies on two pillars, the first being an analytics infrastructure which in real time retrieves data from tens of sources, cleans and harmonizes it, then runs over half a million analyses each day and produces over 20 000 000 rows of results to be used every day. The analytics infrastructure is based on R. Results are notably being used by NIPH for the monitoring of covid-19 development and the surveillance of other transmittable diseases such as influenza and gastro-intestinal illness. The analytics framework also generates hundreds of reports every day, directed at dissemination to municipal health authorities. This framework is not currently publicly available, but an open-source release is expected by the end of 2021. The second pilar is an interactive R Shiny dashboard platform, which is used for communicating the data and the model results to partner organisations. It allows for the easy creation of a website where public and animal health researchers and food safety experts can view real time analyses. This dashboard combines the powerful data visualisation and analysis strength of R with the accessibility, flexibility, structure and interactivity of web-based platforms. The result is a real time interactive surveillance system, that is supported by a solid infrastructure and streamlined data flow, and shared with actors through a beautiful and user-friendly website, based entirely on R.


2019 ◽  
Vol 78 (24) ◽  
pp. 35119-35134 ◽  
Author(s):  
Md Shahzad Alam ◽  
Natesha B. V. ◽  
Ashwin T. S. ◽  
Ram Mohana Reddy Guddeti

2020 ◽  
Vol 2020 (3) ◽  
pp. 60408-1-60408-10
Author(s):  
Kenly Maldonado ◽  
Steve Simske

The principal objective of this research is to create a system that is quickly deployable, scalable, adaptable, and intelligent and provides cost-effective surveillance, both locally and globally. The intelligent surveillance system should be capable of rapid implementation to track (monitor) sensitive materials, i.e., radioactive or weapons stockpiles and person(s) within rooms, buildings, and/or areas in order to predict potential incidents proactively (versus reactively) through intelligence, locally and globally. The system will incorporate a combination of electronic systems that include commercial and modifiable off-the-shelf microcomputers to create a microcomputer cluster which acts as a mini supercomputer which leverages real-time data feed if a potential threat is present. Through programming, software, and intelligence (artificial intelligence, machine learning, and neural networks), the system should be capable of monitoring, tracking, and warning (communicating) the system observer operations (command and control) within a few minutes when sensitive materials are at potential risk for loss. The potential customer is government agencies looking to control sensitive materials and/or items in developing world markets intelligently, economically, and quickly.


2006 ◽  
Vol 64 ◽  
pp. S88-S89
Author(s):  
J.A. Alava ◽  
C. Ezpeleta ◽  
I. Atutxa ◽  
C. Busto ◽  
E. Gómez ◽  
...  

Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Sign in / Sign up

Export Citation Format

Share Document