Influence of Rail Corrugation on Fatigue Life of Bogie Frame of High-Speed EMU

Author(s):  
Baoan Zhang ◽  
Jing Zheng ◽  
Dalian Yu ◽  
Jimin Zhang ◽  
Hechao Zhou ◽  
...  
Author(s):  
Ruixian Xiu ◽  
Maksym Spiryagin ◽  
Qing Wu ◽  
Shuchen Yang ◽  
Yanwen Liu

Current research papers use simulated load spectrums to assess bogie frames’ fatigue life but seldom consider traction and braking loads. Traction and braking loads play important roles in predicting fatigue life in high-speed and heavy haul operational scenarios. Hence, there is a research gap in terms of the consideration of longitudinal load spectrums while assessing bogie frames’ fatigue life. This paper presents research about this topic. A virtual prototype technique available in literature has been extended for this purpose; it uses multibody dynamics and finite element techniques to simulate the behaviour of bogie frames under real operational service loads. As a result, the special simulation methodology has been developed in this work and it includes the unique integration of simulation approaches that includes train dynamics, locomotive dynamics with the consideration of a traction control algorithm and the adopted fatigue life calculation method. This paper gives numerical examples of a rigid-flexible coupled dynamic railway vehicle model subjected to longitudinal forces. Road Environment Percent Occurrence Spectrum (REPOS) load spectrums of the bogie frame were developed from a whole-trip train simulation on a real route. The spectrums are then used to predict locomotive the bogie frame’s fatigue life. The results of the bogie frame fatigue life evaluation performed in this paper show that fatigue lives at the roots of traction rod seats under longitudinal load spectrums are shorter than their fatigue life under vertical load spectrums.


2014 ◽  
Vol 633-634 ◽  
pp. 1166-1173
Author(s):  
Yu Guang Wang ◽  
Da Fu Zhang

The load spectrum, on which there is not a thorough research, is the key factor of the safe operation of EMU. A dynamic model of some high-speed EMU is established and the load time history of main load on frame is obtained through simulation and analysis based on the Beijing-Tianjin route. The load spectrum for main load is calculated by rain-flow counting, the crossing contrast of load spectrum in basic and fault conditions is proceeded as well, the extent of impact of all kinds of fault conditions to bogie main load is analyzed and a brief introduction of estimation method of the frame fatigue life is put forward in this paper.


Author(s):  
Xintian Liu ◽  
Yang Qu ◽  
Xiaobing Yang ◽  
Yongfeng Shen

Background:: In the process of high-speed driving, the wheel hub is constantly subjected to the impact load from the ground. Therefore, it is important to estimate the fatigue life of the hub in the design and production process. Objective:: This paper introduces a method to study the fatigue life of car hub based on the road load collected from test site. Methods:: Based on interval analysis, the distribution characteristics of load spectrum are analyzed. The fatigue life estimation of one - dimensional and two - dimensional load spectra is compared by compiling load spectra. Results:: According to the S-N curve cluster and the one-dimensional program load spectrum, the estimated range fatigue life of the hub is 397,100 km to 529,700 km. For unsymmetrical cyclic loading, each level means and amplitude of load were obtained through the Goodman fatigue empirical formula, and then according to S-N curve clusters in the upper and lower curves and two-dimensional program load spectrum, estimates the fatigue life of wheel hub of the interval is 329900 km to 435200 km, than one-dimensional load spectrum fatigue life was reduced by 16.9% - 17.8%. Conclusion:: This paper lays a foundation for the prediction of fatigue life and the bench test of fatigue durability of auto parts subjected to complex and variable random loads. At the same time, the research method can also be used to estimate the fatigue life of other bearing parts or high-speed moving parts and assemblies.


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chen Wang ◽  
Shihui Luo ◽  
Ziqiang Xu ◽  
Chang Gao ◽  
Weihua Ma

In order to find out the reason for the bogie frame instability alarm in the high-speed railway vehicle, the influence of wheel tread profile of the unstable vehicle was investigated. By means of wheel-rail contact analysis and dynamics simulation, the effect of tread wear on the bogie frame lateral stability was studied. The result indicates that the concave wear of tread is gradually aggravated with the increase of operation mileage; meanwhile the wheel-rail equivalent conicity also increases. For the rail which has not been grinded for a long time, the wear of gauge corner and wide-worn zone is relatively severe; the matching equivalent conicity is 0.31-0.4 between the worn rail and the concave-worn-tread wheel set. The equivalent conicity between the grinded rail and the concave-worn tread is below 0.25; the equivalent conicities are always below 0.1 between the reprofiled wheel set and various rails. The result of the line test indicates that the lateral acceleration of bogie frame corresponding to the worn wheel-rail can reach 8.5m/s2, and the acceleration after the grinding is reduced below 4.5m/s2. By dynamics simulation, it turns out that the unreasonable wheel-rail matching relationship is the major cause of the bogie frame lateral alarm. With the tread-concave wear being aggravated, the equivalent conicity of wheel-rail matching constantly increases, which leads to the bogie frame lateral instability and then the frame instability alarm.


2011 ◽  
Vol 197-198 ◽  
pp. 1599-1603
Author(s):  
Zhen Wei Wang ◽  
Ping An Du ◽  
Ya Ting Yu

Mechanical components are subjected heavy alternate load in industries, such as engine crankshaft, wheel axle, etc. The fatigue failure happens after a long work loading, which affects the production cost, safe and time. So the fatigue life predication is fundamental for the mechanical components design. Especially, it is very important for heavy, high-speed machinery. In this paper, both main fatigue life predication formulas are introduced briefly, including Manson-Coffinn formula and Damage strain model. Then, shortages of above life predication formulas are pointed out, and coefficients are explained in detail. Further calculation error analysis is conducted on the basis of experiments on 16 materials. Results show that above life predication formulas lack calculation accuracy. Finally, it is pointed out that coefficients of fatigue life predication formulas are dependent of material performance. So it is unreliable that coefficients are constants for Manson-Coffin and Damage strain model.


Sign in / Sign up

Export Citation Format

Share Document