scholarly journals Circular Economy in the Manufacture of Bioplastics: From Sewage Sludge to Plastic Bottle

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1425
Author(s):  
N. Anes García ◽  
F. Blanco Álvarez ◽  
A. L. Marqués Sierra

The main objective of this study is the potential evaluation of obtaining bioplastics through biodegradable polyesters synthesized by bacteria, present in the anaerobic treatment of urban and industrial wastewater, which have a series of characteristics to consider as their processing as material bioplastic In Asturias, more than 70,000 tons of sludge are produced and, by applying circular economy criteria and technologies for the production of bioplastics from wastewater, a synergy could be obtained that would allow the reuse of sludge by valorization as raw material. to produce bioplastics. This valorization can be carried out mainly through the combination of two technologies, on the one hand, anaerobic fermentation to produce volatile fatty acids and on the other the generation of bacterial populations that produce Polyhydroxyalkanoates (PHA’s). The PHAs are obtained from the microorganisms present in the sludge generated in the wastewater treatment process.

2016 ◽  
Vol 2 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Dikdik Mulyadi ◽  
Lela Mukmilah Yuningsih ◽  
Desi Kusumawati

Biogas is  one of energy   that can be produced by anaerobic fermentation of the organic compounds. The objective of this study was to determine the effectiveness of the utilization of waste of media  mushroom growth (baglog) with sawdust as raw material for biogas with  cow dung  activators. The study was conducted through anaerobic fermentation of the samples containing waste baglog (sample 1) and sawdust (sample 2), with the addition of cow manure activator to each sample. Both of these samples do anaerobic fermentation for 32 days, then measuring the volume of biogas every 4 days for 32 days. Methane content  in  samples 1 and 2 measured by  using gas chromatography. To see the effect of the addition of activators cow dung biogas volume measurement was  carried out with  cow dung without addition baglog waste and sawdust. The process of degradation baglog and sawdust with an activator of cow dung could be observed  in  some of the parameters through  total solids (TS), total volatile solids (TVS), volatile fatty acids (VFA), the degree of acidity (pH), and C/N ratio. The results showed that effectiveness of sample 1 resulted in the everage of total volume biogas 28% higher than  sample 2. The content of methane in  sample 1  and sampel 2  was 54% %, and 0.21% respectively. The fermentation process biogas production in this experiment  was carried out  at pH 7, with a value of TS, TVS and VFA showed a decrease  trend after the fermentation process,  C/N ratiowas  lower than the baglog waste sawdust until day 32 retention time. Keywords: Sawdust, baglog waste, biogas, fermentation, methane DOI : http://dx.doi.org/10.15408/jkv.v2i1.3100


2021 ◽  
Author(s):  
Mónica Carvalheira ◽  
Anouk F. Duque

The food industrial sector generates large amounts of waste, which are often used for animal feed, for agriculture or landfilled. However, these wastes have a very reach composition in carbon and other compounds, which make them very attractive for valorization through biotechnological processes. Added value compounds, such as volatile fatty acids (VFAs), can be produced by anaerobic fermentation using pure cultures or mixed microbial cultures and food waste as carbon source. Research on valuable applications for VFAs, such as polyhydroxyalkanoates, bioenergy or biological nutrient removal, towards a circular economy is emerging. This enhances the sustainability and the economic value of food waste. This chapter reviews the various types of food waste used for VFAs production using mixed microbial cultures, the anaerobic processes, involved and the main applications for the produced VFAs. The main parameters affecting VFAs production are also discussed.


1994 ◽  
Vol 29 (9) ◽  
pp. 199-204 ◽  
Author(s):  
I. E. Alexiou ◽  
G. K. Anderson ◽  
L. M. Evison

Two-phase anaerobic digestion has often been considered beneficial for the treatment of high strength industrial wastewaters, especially when the first phase is used as a pre-treatment system known as pre-acidification. Several applications in the field of industrial wastewater treatment have been reviewed in order to evaluate the advantages of the pre-acidification process and its effects on the methanogenic reactor. Although pre-acidification has obvious advantages, complete acidification may be detrimental to the efficiency of the overall process. The use of balancing tanks at full-scale has been common practice for the pre-acidification of a wide range of wastewaters yet no accepted design criteria for acidogenic reactors have been formulated and two-phase applications are generally based upon previous experience. The paper summarizes the results of a two year investigation into pre-acidification at both bench- and pilot-scale, presents the results of instant coffee production wastewaters and discusses a wide range of parameters which have been evaluated. Operating criteria will be discussed and guidelines for the design of pre-acidification reactors will be presented. Finally alternatives to using the total VFA (volatile fatty acids) concentrations for expressing the efficiency of acidogenesis will be introduced.


1992 ◽  
Vol 25 (7) ◽  
pp. 351-360 ◽  
Author(s):  
E. A. Stadlbauer ◽  
R. Achenbach ◽  
D. Döll ◽  
B. Jehle ◽  
B. Küfner ◽  
...  

The development of a Pulse-Driven Loop Reactor (PDLR), a Pulsed Anaerobic Filter (PAF) and a Pulsed Anaerobic Baffled Reactor (PABR) is described. In a PDLR internal circulation is achieved by a specially designed pulse-nozzle together with a concentric draft tube. In a PAF and PABR an oscillation is superimposed onto the biosuspension by means of a pulsator unit. Pulsed digesters enhance mass transfer processes. Consequently they facilitate degassing and prevent a build-up of acid spots in sludge beds. Laboratory- and pilot-scale evaluation using highly polluted distillery slops (pear, cherry, raspberry) as industrial wastewater show a COD removal efficiency of 70 -80 % at loading rates of 10 - 5 kg/m3*d. Contamination, both by sulfate (2 g/L) and copper (0.2 g/L), has a most adverse effect on anaerobic treatment of cherry-mashes, giving rise to a build-up of volatile fatty acids. Consequences for distillery plant operation are discussed.


2020 ◽  

<p>In this study, the aerobic and anaerobic biodegradability of the industrial wastewater from the vegetable tanning process were evaluated. Water from a food wastewater treatment system was used as seed inoculum for the aerobic process and mature granular methanogenic sludge from a brewery industrial wastewater plant was used for the anaerobic process. The water from the tanning industry had a biological to chemical oxygen demand ratio of 33% with values of total chemical oxygen demand (COD) in the range of 342000 mg O2/L and total dissolved solids of 506595 mg/L. The assay of the tannery effluent under aerobic conditions resulted in a decrease of COD of 39.2% and a degradation of tannins lower than 12% after 26 days, while the anaerobic degradation showed a COD reduction of 65% with a 39% of degradation of tannins. The production of methane and Volatile Fatty Acids, during the anaerobic treatment, suggests a potential adaptation of biological organisms present in the mature anaerobic granular methanogenic sludge.</p>


1989 ◽  
Vol 21 (4-5) ◽  
pp. 87-95
Author(s):  
J. De Santis ◽  
A. A. Friedman

Overloaded anaerobic treatment systems are characterized by high concentrations of volatile fatty acids and molecular hydrogen and poor conversion of primary substrates to methane. Previous experiments with fixed–film reactors indicated that operation with reduced headspace pressures enhanced anaerobic treatment. For these studies, four suspended culture, anaerobic reactors were operated with headspace pressures maintained between 0.5 and 1.0 atm and a solids retention time of 15 days. For lightly loaded systems (0.4 g SCOD/g VSS-day) vacuum operation provided minor treatment improvements. For shock organic loads, vacuum operation proved to be more stable and to support quicker recovery from upset conditions. Based on these studies and a companion set of bioassay tests, it was concluded that: (a) a loading rate of about 1.0 g SCOD/g VSS-day represents a practical loading limit for successful anaerobic treatment, (b) a headspace pressure of approximately 0.75 atm appears to be an optimum operating pressure for anaerobic systems and (c) simple modification to existing systems may provide relief for organically overloaded systems.


Author(s):  
Paola Sangiorgio ◽  
Alessandra Verardi ◽  
Salvatore Dimatteo ◽  
Anna Spagnoletta ◽  
Stefania Moliterni ◽  
...  

AbstractThe increase in the world population leads to rising demand and consumption of plastic raw materials; only a small percentage of plastics is recovered and recycled, increasing the quantity of waste released into the environment and losing its economic value. The plastics represent a great opportunity in the circular perspective of their reuse and recycling. Research is moving, on the one hand, to implement sustainable systems for plastic waste management and on the other to find new non-fossil-based plastics such as polyhydroxyalkanoates (PHAs). In this review, we focus our attention on Tenebrio molitor (TM) as a valuable solution for plastic biodegradation and biological recovery of new biopolymers (e.g. PHA) from plastic-producing microorganisms, exploiting its highly diversified gut microbiota. TM’s use for plastic pollution management is controversial. However, TM microbiota is recognised as a source of plastic-degrading microorganisms. TM-based plastic degradation is improved by co-feeding with food loss and waste as a dietary energy source, thus valorising these low-value substrates in a circular economy perspective. TM as a bioreactor is a valid alternative to traditional PHA recovery systems with the advantage of obtaining, in addition to highly pure PHA, protein biomass and rearing waste from which to produce fertilisers, chitin/chitosan, biochar and biodiesel. Finally, we describe the critical aspects of these TM-based approaches, mainly related to TM mass production, eventual food safety problems, possible release of microplastics and lack of dedicated legislation.


Author(s):  
Leonidas Milios

AbstractThe transition to a circular economy is a complex process requiring wide multi-level and multi-stakeholder engagement and can be facilitated by appropriate policy interventions. Taking stock of the importance of a well-balanced policy mix that includes a variety of complementing policy instruments, the circular economy action plan of the European Union (COM(2020) 98 final) includes a section about “getting the economics right” in which it encourages the application of economic instruments. This contribution presents a comprehensive taxation framework, applied across the life cycle of products. The framework includes (1) a raw material resource tax, (2) reuse/repair tax relief, and (3) a waste hierarchy tax at the end of life of products. The research is based on a mixed method approach, using different sources to analyse the different measures in the framework. More mature concepts, such as material resource taxes, are analysed by reviewing the existing literature. The analysis of tax relief on repairs is based on interviews with stakeholders in Sweden, where this economic policy instrument has been implemented since 2017. Finally, for the waste hierarchy tax, which is a novel proposition in this contribution, macroeconomic modelling is used to analyse potential impacts of future implementation. In all cases, several implementation challenges are identified, and potential solutions are discussed according to literature and empirical sources. Further research is required both at the individual instrument and at the framework level. Each of the tax proposals needs a more detailed examination for its specificities of implementation, following the results of this study.


Sign in / Sign up

Export Citation Format

Share Document