New Reconfiguration Method Based on Logic Gates for Small Dynamic Photovoltaic Array

Author(s):  
L. Bouselham ◽  
A. Rabhi ◽  
B. Hajji
2016 ◽  
Vol E99.C (2) ◽  
pp. 285-292 ◽  
Author(s):  
Tran THI THU HUONG ◽  
Hiroshi SHIMADA ◽  
Yoshinao MIZUGAKI

Author(s):  
Jiko Raut ◽  
Prithidipa Sahoo

Abstract:: Thiol-containing amino acids and peptides play crucial roles in many physiological processses. For example, Cysteine (Cys) and Homocysteine (Hcy) are considered to be related to a number of health disorders such as renal failure, AIDS, Alzheimer’s and Parkinson’s diseases, atherosclerotic cardiovascular diseases, neutral tube defects, and coronary heart disease. Glutathione (GSH), an important tripeptide with a thiol group, performs vital biological functions that are in-volved in combating oxidative stress and maintaining redox homeostasis. Cysteine also plays important roles in our bodies as an antioxidant, a metal cofactor binder in enzymes, and a protein structure stabilizer by disulfide bond formation in the proteins. Hcy are involved in cellular growth and GSH in redox homeostasis. Hence, the rapid, sensitive, and selective de-tection of such biothiols is of considerable importance and significant interest. Different fluorescent chemosensors have been introduced to develop and improve the detection techniques and accuracy of these biothiols. In this review article we have presented some research works to show a guiding principle for the design of effective chemosensors which are highly sensitive and selective for the detection of particular a group of biothiols in aqueous medium. In line with these develop-ments, the researchers have developed novel chemosensors that signal binding events of these above mentioned biothiols through their optical properties. The binding mechanism and properties have also been established with different theoretical studies. Their applications in the form of colorimetric kit, logic gates, live cell imaging, and quantification from different bi-ological samples have also been developed.


2020 ◽  
Vol 10 (4) ◽  
pp. 369-380
Author(s):  
K. Maji ◽  
K. Mukherjee ◽  
A. Raja

All optical tri-state frequency encoded logic gates NOT and NAND are proposed and numerically investigated using TOAD based interferometric switch for the first time to the best of our knowledge. The optical power spectrum, extinction ratio, contrast ration, and amplified spontaneous noise are calculated to analyze and confirm practical feasibility of the gates. The proposed device works for low switching energy and has high contrast and extinction ratio as indicated in this work.


Sign in / Sign up

Export Citation Format

Share Document