Beam Dynamics Using a Generalized Beam Theory Based on the Solution of a Reference Beam Problem

Author(s):  
Stephan Kugler ◽  
Peter A. Fotiu ◽  
Justin Murín
2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2014 ◽  
Vol 84 ◽  
pp. 325-334 ◽  
Author(s):  
Rodrigo Gonçalves ◽  
Rui Bebiano ◽  
Dinar Camotim

Author(s):  
J. M. Allen ◽  
L. B. Erickson

A NASTRAN finite element analysis of a free standing gas turbine blade is presented. The analysis entails calculation of the first four natural frequencies, mode shapes, and relative vibratory stresses, as well as deflections and stresses due to centrifugal loading. The stiffening effect of the centrifugal force field was accounted for by using NASTRAN’s differential stiffness option. Natural frequencies measured in a rotating test correlated well with computed results. Areas of maximum vibratory stress (fundamental mode) coincided with the three zones of crack initiation observed in a metallographic examination of a fatigue failure. Airfoil stress distributions were found to be significantly different from that predicted by generalized beam theory, especially near the airfoil-platform junction.


2003 ◽  
Vol 03 (04) ◽  
pp. 461-490 ◽  
Author(s):  
N. SILVESTRE ◽  
D. CAMOTIM

A geometrically nonlinear Generalized Beam Theory (GBT) is formulated and its application leads to a system of equilibrium equations which are valid in the large deformation range but still retain and take advantage of the unique GBT mode decomposition feature. The proposed GBT formulation, for the elastic post-buckling analysis of isotropic thin-walled members, is able to handle various types of loading and arbitrary initial geometrical imperfections and, in particular, it can be used to perform "exact" or "approximate" (i.e., including only a few deformation modes) analyses. Concerning the solution of the system of GBT nonlinear equilibrium equations, the finite element method (FEM) constitutes the most efficient and versatile numerical technique and, thus, a beam FE is specifically developed for this purpose. The FEM implementation of the GBT post-buckling formulation is reported in some detail and then employed to obtain numerical results, which validate and illustrate the application and capabilities of the theory.


Sign in / Sign up

Export Citation Format

Share Document