Application of Machine Learning Algorithms for Local Level Flood Prediction: A Simplest Way of Likelihood Predictive Model of Monsoon River Flood

Author(s):  
Arif Hasan Khan ◽  
Md. Abdulla Hel Kafi ◽  
Shah Mostafa Khaled ◽  
Mollah Md. Awlad Hossain
2021 ◽  
Vol 17 ◽  
Author(s):  
Hui Zhang ◽  
Qidong Liu ◽  
Xiaoru Sun ◽  
Yaru Xu ◽  
Yiling Fang ◽  
...  

Background: The pathophysiology of Alzheimer's disease (AD) is still not fully studied. Objective: This study aimed to explore the differently expressed key genes in AD and build a predictive model of diagnosis and treatment. Methods: Gene expression data of the entorhinal cortex of AD, asymptomatic AD, and control samples from the GEO database were analyzed to explore the relevant pathways and key genes in the progression of AD. Differentially expressed genes between AD and the other two groups in the module were selected to identify biological mechanisms in AD through KEGG and PPI network analysis in Metascape. Furthermore, genes with a high connectivity degree by PPI network analysis were selected to build a predictive model using different machine learning algorithms. Besides, model performance was tested with five-fold cross-validation to select the best fitting model. Results: A total of 20 co-expression gene clusters were identified after the network was constructed. Module 1 (in black) and module 2 (in royal blue) were most positively and negatively correlated with AD, respectively. Total 565 genes in module 1 and 215 genes in module 2, respectively, overlapped in two differentially expressed genes lists. They were enriched in the G protein-coupled receptor signaling pathway, immune-related processes, and so on. 11 genes were screened by using lasso logistic regression, and they were considered to play an important role in predicting AD samples. The model built by the support vector machine algorithm with 11 genes showed the best performance. Conclusion: This result shed light on the diagnosis and treatment of AD.


Author(s):  
N V Ganapathi Raju ◽  
P Gopala Krishna ◽  
Katapally Manognya ◽  
G S S Raj Kiran ◽  
Palakodeti Rohit ◽  
...  

2020 ◽  
Author(s):  
Nida Fatima

Abstract Background: Preoperative prognostication of clinical and surgical outcome in patients with neurosurgical diseases can improve the risk stratification, thus can guide in implementing targeted treatment to minimize these events. Therefore, the author aims to highlight the development and validation of predictive models determining neurosurgical outcomes through machine learning algorithms using logistic regression.Methods: Logistic regression (enter, backward and forward) and least absolute shrinkage and selection operator (LASSO) method for selection of variables from selected database can eventually lead to multiple candidate models. The final model with a set of predictive variables must be selected based upon the clinical knowledge and numerical results.Results: The predictive model which performed best on the discrimination, calibration, Brier score and decision curve analysis must be selected to develop machine learning algorithms. Logistic regression should be compared with the LASSO model. Usually for the big databases, the predictive model selected through logistic regression gives higher Area Under the Curve (AUC) than those with LASSO model. The predictive probability derived from the best model could be uploaded to an open access web application which is easily deployed by the patients and surgeons to make a risk assessment world-wide.Conclusions: Machine learning algorithms provide promising results for the prediction of outcomes following cranial and spinal surgery. These algorithms can provide useful factors for patient-counselling, assessing peri-operative risk factors, and predicting post-operative outcomes after neurosurgery.


Author(s):  
Inssaf El Guabassi ◽  
Zakaria Bousalem ◽  
Rim Marah ◽  
Aimad Qazdar

In recent years, the world's population is increasingly demanding to predict the future with certainty, predicting the right information in any area is becoming a necessity. One of the ways to predict the future with certainty is to determine the possible future. In this sense, machine learning is a way to analyze huge datasets to make strong predictions or decisions. The main objective of this research work is to build a predictive model for evaluating students’ performance. Hence, the contributions are threefold. The first is to apply several supervised machine learning algorithms (i.e. ANCOVA, Logistic Regression, Support Vector Regression, Log-linear Regression, Decision Tree Regression, Random Forest Regression, and Partial Least Squares Regression) on our education dataset. The second purpose is to compare and evaluate algorithms used to create a predictive model based on various evaluation metrics. The last purpose is to determine the most important factors that influence the success or failure of the students. The experimental results showed that the Log-linear Regression provides a better prediction as well as the behavioral factors that influence students’ performance.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Elsie G Ross ◽  
Nicholas Leeper ◽  
Nigam Shah

Introduction: Patients with peripheral artery disease (PAD) are at high risk of major adverse cardiac and cerebrovascular events (MACCE). However, no currently available risk scores accurately delineate which patients are most likely to sustain an event, creating a missed opportunity for more aggressive risk factor management. We set out to develop a novel predictive model - based on automated machine learning algorithms using electronic health record (EHR) data - with the aim of identifying which PAD patients are most likely to have an adverse outcome during follow-up. Methods: Data were derived from patients with a diagnosis of PAD at our institution. Novel machine-learning algorithms including random forest and penalized regression predictive models were developed using structured and unstructured data that including lab values, diagnosis codes, medications, and clinical notes. Patients were matched for total follow-up time to remove length of patient records as a biasing factor in our predictive models. Results: After matching for length of follow-up, 3,807 patients were included in our models. A total of 1,269 patients had a MACCE event after PAD diagnosis. The median time to MACCE was 2.8 years after PAD diagnosis. Utilizing 1,492 different variables extracted from the EHR, our best predictive model was able to very accurately predict which patients would go on to have a MACCE event after diagnosis of PAD with an AUC of 0.98, with a sensitivity, specificity and positive predictive value of 0.90, 0.96, and 0.93, respectively. Conclusions: Hypothesis-free, machine-learning algorithms using freely available data in the EHR can accurately predict which PAD patients are most likely to go on to develop future MACCE. While these findings require validation in an independent data set, there is hope that these informatics approaches can be applied to the medical record in an automated fashion to risk stratify patients with vascular disease and identify those who might benefit from more aggressive disease management in real-time.


Author(s):  
Mrs. Gowri G

Abstract: Air-pollution is one of the main threats for developed societies. According to the World Health Organization (WHO), pollution is the main cause of deaths among children aged under five years. Smart cities are called to play a decisive role to increase such pollution in real-time. The increase in air pollution due to fossil fuel consumption as well as its ill effects on the climate has made air pollution forecasting an important research area in today’s times. Deployment of the Internet of things (IoT) based sensors has considerably changed the dynamics of predicting air quality. prediction of spatio-temporal data has been one of the major challenges in creating a good predictive model. There are many different approaches which have been used to create an accurate predictive model. Primitive predictive machine learning algorithms like simple linear regression have failed to produce accurate results primarily due to lack of computing power but also due to lack of optimization techniques. A recent development in deep learning as well as improvements in computing resources has increased the accuracy of predicting time series data. However, with large spatio-temporal data sets spanning over years. Employing regression models on the entire data can cause per date predictions to be corrupted. In this work, we look at dealing with pre-processing the times series. However, pre-processing involves a similarity measure, we explore the use of Dynamic Time Warping (DTW). K-means is then used to classify the spatio-temporal pollution data over a period of 16 years from 2000 to 2016. Here Mean Absolute error (MAE) and Root Mean Square Error (RMSE) have been used as evaluation criteria for the comparison of regression models. Keywords: Spatio-temporal data, Primitive predictive machine learning algorithms, regression models


Sign in / Sign up

Export Citation Format

Share Document