scholarly journals Prediction of Air Pollution in Smart Cities Using Machine Learning Techniques

Author(s):  
Mrs. Gowri G

Abstract: Air-pollution is one of the main threats for developed societies. According to the World Health Organization (WHO), pollution is the main cause of deaths among children aged under five years. Smart cities are called to play a decisive role to increase such pollution in real-time. The increase in air pollution due to fossil fuel consumption as well as its ill effects on the climate has made air pollution forecasting an important research area in today’s times. Deployment of the Internet of things (IoT) based sensors has considerably changed the dynamics of predicting air quality. prediction of spatio-temporal data has been one of the major challenges in creating a good predictive model. There are many different approaches which have been used to create an accurate predictive model. Primitive predictive machine learning algorithms like simple linear regression have failed to produce accurate results primarily due to lack of computing power but also due to lack of optimization techniques. A recent development in deep learning as well as improvements in computing resources has increased the accuracy of predicting time series data. However, with large spatio-temporal data sets spanning over years. Employing regression models on the entire data can cause per date predictions to be corrupted. In this work, we look at dealing with pre-processing the times series. However, pre-processing involves a similarity measure, we explore the use of Dynamic Time Warping (DTW). K-means is then used to classify the spatio-temporal pollution data over a period of 16 years from 2000 to 2016. Here Mean Absolute error (MAE) and Root Mean Square Error (RMSE) have been used as evaluation criteria for the comparison of regression models. Keywords: Spatio-temporal data, Primitive predictive machine learning algorithms, regression models

2019 ◽  
Vol 28 (1) ◽  
pp. 349-354 ◽  
Author(s):  
Ahmed Samy Abd El Aziz Moursi ◽  
Marwa Shouman ◽  
Ezz El-din Hemdan ◽  
Nawal El-Fishawy

Author(s):  
Magdalena Kukla-Bartoszek ◽  
Paweł Teisseyre ◽  
Ewelina Pośpiech ◽  
Joanna Karłowska-Pik ◽  
Piotr Zieliński ◽  
...  

AbstractIncreasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.


The aim of this research is to do risk modelling after analysis of twitter posts based on certain sentiment analysis. In this research we analyze posts of several users or a particular user to check whether they can be cause of concern to the society or not. Every sentiment like happy, sad, anger and other emotions are going to provide scaling of severity in the conclusion of final table on which machine learning algorithm is applied. The data which is put under the machine learning algorithms are been monitored over a period of time and it is related to a particular topic in an area


Author(s):  
Nor Azizah Hitam ◽  
Amelia Ritahani Ismail

Machine Learning is part of Artificial Intelligence that has the ability to make future forecastings based on the previous experience. Methods has been proposed to construct models including machine learning algorithms such as Neural Networks (NN), Support Vector Machines (SVM) and Deep Learning. This paper presents a comparative performance of Machine Learning algorithms for cryptocurrency forecasting. Specifically, this paper concentrates on forecasting of time series data. SVM has several advantages over the other models in forecasting, and previous research revealed that SVM provides a result that is almost or close to actual result yet also improve the accuracy of the result itself. However, recent research has showed that due to small range of samples and data manipulation by inadequate evidence and professional analyzers, overall status and accuracy rate of the forecasting needs to be improved in further studies. Thus, advanced research on the accuracy rate of the forecasted price has to be done.


2021 ◽  
Vol 17 ◽  
Author(s):  
Hui Zhang ◽  
Qidong Liu ◽  
Xiaoru Sun ◽  
Yaru Xu ◽  
Yiling Fang ◽  
...  

Background: The pathophysiology of Alzheimer's disease (AD) is still not fully studied. Objective: This study aimed to explore the differently expressed key genes in AD and build a predictive model of diagnosis and treatment. Methods: Gene expression data of the entorhinal cortex of AD, asymptomatic AD, and control samples from the GEO database were analyzed to explore the relevant pathways and key genes in the progression of AD. Differentially expressed genes between AD and the other two groups in the module were selected to identify biological mechanisms in AD through KEGG and PPI network analysis in Metascape. Furthermore, genes with a high connectivity degree by PPI network analysis were selected to build a predictive model using different machine learning algorithms. Besides, model performance was tested with five-fold cross-validation to select the best fitting model. Results: A total of 20 co-expression gene clusters were identified after the network was constructed. Module 1 (in black) and module 2 (in royal blue) were most positively and negatively correlated with AD, respectively. Total 565 genes in module 1 and 215 genes in module 2, respectively, overlapped in two differentially expressed genes lists. They were enriched in the G protein-coupled receptor signaling pathway, immune-related processes, and so on. 11 genes were screened by using lasso logistic regression, and they were considered to play an important role in predicting AD samples. The model built by the support vector machine algorithm with 11 genes showed the best performance. Conclusion: This result shed light on the diagnosis and treatment of AD.


2022 ◽  
pp. 34-46
Author(s):  
Amtul Waheed ◽  
Jana Shafi ◽  
Saritha V.

In today's world of advanced technologies in IoT and ITS in smart cities scenarios, there are many different projections such as improved data propagation in smart roads and cooperative transportation networks, autonomous and continuously connected vehicles, and low latency applications in high capacity environments and heterogeneous connectivity and speed. This chapter presents the performance of the speed of vehicles on roadways employing machine learning methods. Input variable for each learning algorithm is the density that is measured as vehicle per mile and volume that is measured as vehicle per hour. And the result shows that the output variable is the speed that is measured as miles per hour represent the performance of each algorithm. The performance of machine learning algorithms is calculated by comparing the result of predictions made by different machine learning algorithms with true speed using the histogram. A result recommends that speed is varying according to the histogram.


Sign in / Sign up

Export Citation Format

Share Document