Effects of Regulated Deficit Irrigation (RDI) Applied at Different Growth Stages of Greenhouse Tomato on Yield and Fruit Quality

Author(s):  
Amal Ghannem ◽  
Imed Ben Aissa ◽  
Rajouene Majdoub
HortScience ◽  
2019 ◽  
Vol 54 (8) ◽  
pp. 1409-1417 ◽  
Author(s):  
Xuelian Jiang ◽  
Yueling Zhao ◽  
Ling Tong ◽  
Rui Wang ◽  
Sheng Zhao

To investigate the quantitative response of tomato yield and fruit quality to deficit irrigation applied at different growth stages, greenhouse experiments were conducted in 2017 and 2018. Three irrigation treatments (full irrigation and two-thirds or one-third of full irrigation) were applied to greenhouse-grown tomato plants at flowering and fruit development (stage 2) and at fruit maturation stage (stage 3). Grey relational analysis (GRA), the technique for order preference by similarity to an ideal solution (TOPSIS), and principal components analysis (PCA) were used to calculate the comprehensive fruit quality indexes, and combinatorial evaluation method was determined. The results showed that deficit irrigation significantly reduced evapotranspiration (ET) and tomato yield and that relative yield had a negative linear correlation with relative seasonal water deficit (1−ETi/ETc). However, deficit irrigation improved fruit quality, especially at stage 2. Total soluble solids, the total soluble sugar concentration, the sugar-to-acid ratio, and vitamin C in the tomatoes all increased significantly in plants that were deficit irrigated compared with fully irrigated plants, while organic acids and lycopene decreased in both years. There were linear correlations between fruit quality parameters and 1−ETi/ETc. The comprehensive quality index derived from GRA and PCA is reliable, and the comprehensive quality indexes given by GRA, PCA, and a combination of GRA and PCA showed positive linear correlation with 1−ETi/ETc. The comprehensive quality ranking showed that in both years, F2/3M1 (two-thirds full irrigation at stage 2) gave a better result and CK (full irrigation) the worst. An appropriate water deficit at the flowering and fruit development stage, which results in a trade-off between acceptable yield and improved fruit quality, is recommended. Our results provide a sound basis for tomato production that has a desirable balance between high yield and high fruit quality.


2017 ◽  
Vol 36 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Tomás E. Lobos ◽  
Jorge B. Retamales ◽  
Samuel Ortega-Farías ◽  
Eric J. Hanson ◽  
Rafael López-Olivari ◽  
...  

2020 ◽  
Vol 28 (1) ◽  
pp. 93-100
Author(s):  
Chenafi Azzeddine ◽  
Bachir Bey Mostapha ◽  
Chennafi Houria

AbstractThe impact of regulated drip-irrigation on productivity and fruit quality of tomato ‘Tofane’ has been studied under a warm dry desert climate in southern Algeria. Yield, fruit weight and size, water content and parameters of fruit quality – total soluble solids, phenolic compounds, carotenoids, vitamin C, pH and titratable acidity were determined. Two irrigation treatments were applied in 2012 and 2013: T1, optimal irrigation (100% evapotranspiration – ETc) during the whole growth period (growth stages I, II and III); T2, optimal irrigation during I and II stages, and regulated deficit irrigation (67% ETc) during stage III (from fruit set to full fruit maturity of first and second bunch). T1 treatment during the whole season showed the highest values of soil water potential (Ψsoil), between −0.02 MPa and −0.06 MPa, on depths of 0.3 and 0.6 m, respectively. During stage III, regulated deficit irrigation caused the lowest Ψsoil values, which were between −0.1 MPa and −0.12 MPa on a soil depth of 0.3 and 0.6 m, respectively. Deficit irrigation caused significant decrease of water content in fruits and not significant decrease of fruit weight and size, as well as fruit yield while water saving for irrigation amounted to 10%. Comfort-irrigated tomato plants produced fruits containing significantly higher titratable acidity, total soluble solids and vit. C content. There was a tendency to decrease carotenoid content and increase phenolic content in both years of the study. Due to the possibility of water saving with not significant yield decrease, it seems that the reduction of water use in growth stage III would be an adequate strategy for tomato cultivation in hot, dry climate.


2010 ◽  
Vol 8 (S2) ◽  
pp. 86 ◽  
Author(s):  
F. Perez-Sarmiento ◽  
R. Alcobendas ◽  
O. Mounzer ◽  
J. Alarcon ◽  
E. Nicolas

Sign in / Sign up

Export Citation Format

Share Document