Resynthesize Technique for Soft Error-Tolerant Design of Combinational Circuits

Author(s):  
Behnam Ghavami ◽  
Mohsen Raji
2021 ◽  
Author(s):  
Jalal Mohammad Chikhe

Due to the reduction of transistor size, modern circuits are becoming more sensitive to soft errors. The development of new techniques and algorithms targeting soft error detection are important as they allow designers to evaluate the weaknesses of the circuits at an early stage of the design. The project presents an optimized implementation of soft error detection simulator targeting combinational circuits. The developed simulator uses advanced switch level models allowing the injection of soft errors caused by single event-transient pulses with magnitudes lesser than the logic threshold. The ISCAS'85 benchmark circuits are used for the simulations. The transients can be injected at drain, gate, or inputs of logic gate. This gives clear indication of the importance of transient injection location on the fault coverage. Furthermore, an algorithm is designed and implemented in this work to increase the performance of the simulator. This optimized version of the simulator achieved an average speed-up of 310 compared to the non-algorithm based version of the simulator.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850097 ◽  
Author(s):  
Ahmad T. Sheikh ◽  
Aiman H. El-Maleh

Due to the continuous scaling of digital systems and the increased demand on low power devices, design of effective soft error tolerance techniques is of high importance to cope with the increased susceptibility of systems to soft errors and to enhance system reliability. In this work, we propose a double modular redundancy (DMR) technique that aims to achieve high reliability with reduced area overhead. Furthermore, we propose an improved application of DMR based on the use of C-element (DMR-CEL). The proposed technique is compared with Triple Modular Redundancy (TMR) technique and DMR-CEL. Simulations performed for LGSynth’91 benchmark circuits demonstrate that applying the proposed DMR technique achieves improved reliability with significantly lower area overhead than TMR without voter protection. Furthermore, improved reliability with lower area overhead is achieved by the proposed DMR technique in comparison to DMR-CEL without C-element protection. In addition, applying a recently proposed transistor sizing technique on our proposed DMR technique achieves comparable reliability to that achieved by TMR with voter protection and DMR-CEL with C-element protection with lower area overhead than TMR.


2015 ◽  
Vol 55 (2) ◽  
pp. 448-460 ◽  
Author(s):  
Mohsen Raji ◽  
Hossein Pedram ◽  
Behnam Ghavami

Sign in / Sign up

Export Citation Format

Share Document