Simulation-Based Method for Synthesizing Soft Error Tolerant Combinational Circuits

2015 ◽  
Vol 64 (3) ◽  
pp. 935-948 ◽  
Author(s):  
Aiman H. El-Maleh ◽  
Khaled A. K. Daud
2021 ◽  
Author(s):  
Jalal Mohammad Chikhe

Due to the reduction of transistor size, modern circuits are becoming more sensitive to soft errors. The development of new techniques and algorithms targeting soft error detection are important as they allow designers to evaluate the weaknesses of the circuits at an early stage of the design. The project presents an optimized implementation of soft error detection simulator targeting combinational circuits. The developed simulator uses advanced switch level models allowing the injection of soft errors caused by single event-transient pulses with magnitudes lesser than the logic threshold. The ISCAS'85 benchmark circuits are used for the simulations. The transients can be injected at drain, gate, or inputs of logic gate. This gives clear indication of the importance of transient injection location on the fault coverage. Furthermore, an algorithm is designed and implemented in this work to increase the performance of the simulator. This optimized version of the simulator achieved an average speed-up of 310 compared to the non-algorithm based version of the simulator.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850097 ◽  
Author(s):  
Ahmad T. Sheikh ◽  
Aiman H. El-Maleh

Due to the continuous scaling of digital systems and the increased demand on low power devices, design of effective soft error tolerance techniques is of high importance to cope with the increased susceptibility of systems to soft errors and to enhance system reliability. In this work, we propose a double modular redundancy (DMR) technique that aims to achieve high reliability with reduced area overhead. Furthermore, we propose an improved application of DMR based on the use of C-element (DMR-CEL). The proposed technique is compared with Triple Modular Redundancy (TMR) technique and DMR-CEL. Simulations performed for LGSynth’91 benchmark circuits demonstrate that applying the proposed DMR technique achieves improved reliability with significantly lower area overhead than TMR without voter protection. Furthermore, improved reliability with lower area overhead is achieved by the proposed DMR technique in comparison to DMR-CEL without C-element protection. In addition, applying a recently proposed transistor sizing technique on our proposed DMR technique achieves comparable reliability to that achieved by TMR with voter protection and DMR-CEL with C-element protection with lower area overhead than TMR.


2015 ◽  
Vol 1108 ◽  
pp. 79-84 ◽  
Author(s):  
Haider F. Abdul Amir ◽  
Fuei Pien Chee

Silicon is always the dominant semiconductor material of the modern semiconductor industry. This is as silicon can retain its semiconductor characteristics even at a higher temperature while the other semiconductor materials can't. However, when a silicon device is exposed to a flux of energetic radiation or particles, the effects from the radiation and the induced secondary particles can cause several degradation of the device performance. For the purpose of investigate the resultant effects from the bombardment of neutrons and the behavior of secondary charged particles in the silicon model, the neutron displacement defect was measured in situ and then followed by the simulation based on Monte Carlo method. The bombardment of neutron in the silicon model produce at least three secondary particles, which are alpha ˸α˹ particles, proton (p) particles and silicon recoil atoms, through the reactions of ˸̾˼α˹˼˰˸̾˼̀˹˰and neutron scattering respectively. The kinetic energy and range of these charged particles are different among themselves, and thus the probability of hitting and degradation effects in the silicon materials are varies. The simulation calculation showed that ˸̾˼α˹˰reaction induced soft error cross section of about 8.7 x 10-14 cm2 and for recoil atoms, it is about 2.9 x 10-15 cm2. There was no error of the silicon device configuration induced by proton particles until 1010 n/cm2.neutron fluence. It can be concluded that the largest portion of error in the silicon model is induced by the secondary alpha ˸α˹ particles.


2015 ◽  
Vol 55 (2) ◽  
pp. 448-460 ◽  
Author(s):  
Mohsen Raji ◽  
Hossein Pedram ◽  
Behnam Ghavami

Sign in / Sign up

Export Citation Format

Share Document