Numerical Study of the Mutual Influence of Nearby Buried Structures Under Seismic Influences

Author(s):  
Valentin G. Bazhenov ◽  
Nadezhda S. Dyukina
Author(s):  
R. N. Guzeev ◽  
◽  
E. S. Goloviznina ◽  

Effect of structural interaction on drag coefficient is considered. Numerical study is performed using discrete vortex method. There have been obtained dependences of the mutual influence of rectangular cross sections with different aspect ratios depending on the reduced distance between the cross sections, on their aerodynamics. The effect of structural interaction of cable-stayed bridge pylon legs is investigated on the examples of Golden Bridge and Russian Bridge in Vladivostok.


2018 ◽  
Vol 243 ◽  
pp. 00018 ◽  
Author(s):  
Pavel Pisarev ◽  
Aleksandr Anoshkin

In this work the physical and mathematical models of predicting the effective acoustic properties of sound absorbing structures (Helmholtz resonators) in joint operation were formulated. Numerical simulation has been performed on the modeling of an acoustic wave in a model channel with resonators of various configurations. Research was carried out to optimize the mutual arrangement of Helmholtz cells (resonators) in sound-absorbing structures of resonant type. According to the results of the research, the mutual influence of closely located prismatic resonators in the model channel of rectangular shape was revealed. The most effective combinations of prismatic resonators were determined. Schemes and recommendations for the placement of composite and base resonators in sound-absorbing structures were developed. Unique single-layer composite sound-absorbing structures, working at several resonant frequencies, were developed.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2019 ◽  
Vol 66 (5) ◽  
pp. 640-649 ◽  
Author(s):  
Gianluca Lo Coco ◽  
Salvatore Gullo ◽  
Gabriele Profita ◽  
Chiara Pazzagli ◽  
Claudia Mazzeschi ◽  
...  

2006 ◽  
Vol 134 ◽  
pp. 541-546 ◽  
Author(s):  
P. Verleysen ◽  
J. Degrieck
Keyword(s):  

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


Sign in / Sign up

Export Citation Format

Share Document