scholarly journals Variance Measures for Symmetric Positive (Semi-) Definite Tensors in Two Dimensions

Author(s):  
Magnus Herberthson ◽  
Evren Özarslan ◽  
Carl-Fredrik Westin

AbstractCalculating the variance of a family of tensors, each represented by a symmetric positive semi-definite second order tensor/matrix, involves the formation of a fourth order tensor $$R_{abcd}$$ R abcd . To form this tensor, the tensor product of each second order tensor with itself is formed, and these products are then summed, giving the tensor $$R_{abcd}$$ R abcd the same symmetry properties as the elasticity tensor in continuum mechanics. This tensor has been studied with respect to many properties: representations, invariants, decomposition, the equivalence problem et cetera. In this paper we focus on the two-dimensional case where we give a set of invariants which ensures equivalence of two such fourth order tensors $$R_{abcd}$$ R abcd and $$\widetilde{R}_{abcd}$$ R ~ abcd . In terms of components, such an equivalence means that components $$R_{ijkl}$$ R ijkl of the first tensor will transform into the components $$\widetilde{R}_{ijkl}$$ R ~ ijkl of the second tensor for some change of the coordinate system.

Author(s):  
Josef Betten

In this paper a scalar-valued isotropic tensor function is considered, the variables of which are constitutive tensors of orders two and four, for instance, characterizing the anisotropic properties of a material. Therefore, the system of irreducible invariants of a fourth-order tensor is constructed. Furthermore, the joint or simultaneous invariants of a second-order and a fourth-order tensor are found. In a similar way one can construct an integrity basis for a tensor of order greater than four, as shown in the paper, for instance, for a tensor of order six.


1996 ◽  
Vol 05 (03) ◽  
pp. 465-476 ◽  
Author(s):  
L. LEPETIT ◽  
G. CHÉRIAUX ◽  
M. JOFFRE

We propose a new technique, using femtosecond Fourier-transform spectral interferometry, to measure the second-order nonlinear response of a material in two dimensions of frequency. We show numerically the specific and unique information obtained from such a two-dimensional measurement. The technique is demonstrated by measuring the second-order phase-matching map of two non-resonant nonlinear crystals.


Author(s):  
Xirui Zhang ◽  
Zhiwen Liu ◽  
Yougen Xu ◽  
Xiaofeng Gong

Author(s):  
Xiang Yuan Zheng ◽  
Torgeir Moan ◽  
Ser Tong Quek

The one-dimensional Fast Fourier Transform (FFT) has been extensively applied to efficiently simulate Gaussian wave elevation and water particle kinematics. The actual sea elevation/kinematics exhibit non-Gaussianities that mathematically can be represented by the second-order random wave theory. The elevation/kinematics formulation contains double-summation frequency sum and difference terms which in computation make the dynamic analysis of offshore structural response prohibitive. This study aims at a direct and efficient two-dimensional FFT algorithm for simulating the frequency sum terms. For the frequency difference terms, inverse FFT and FFT are respectively implemented across the two dimensions of the wave interaction matrix. Given specified wave conditions, not only the wave elevation but kinematics and associated Morison force are simulated. Favorable agreements are achieved when the statistics of elevation/kinematics are compared with not only the empirical fits but the analytical solutions developed based on modified eigenvalue/eigenvector approach, while the computation effort is very limited. In addition, the stochastic analyses in both time-and frequency domains show that the near-surface Morison force and induced linear oscillator response exhibits stronger non-Gaussianities by involving the second-order wave effects.


2016 ◽  
Vol 228 (3) ◽  
pp. 1045-1069 ◽  
Author(s):  
Mawafag F. Alhasadi ◽  
Salvatore Federico

2017 ◽  
Vol 15 (01) ◽  
pp. 1750079
Author(s):  
Bo Wang ◽  
Dong Liang ◽  
Tongjun Sun

In this paper, a new conservative and splitting fourth-order compact difference scheme is proposed and analyzed for solving two-dimensional linear Schrödinger equations. The proposed splitting high-order compact scheme in two dimensions has the excellent property that it preserves the conservations of charge and energy. We strictly prove that the scheme satisfies the charge and energy conservations and it is unconditionally stable. We also prove the optimal error estimate of fourth-order accuracy in spatial step and second-order accuracy in time step. The scheme can be easily implemented and extended to higher dimensional problems. Numerical examples are presented to confirm our theoretical results.


1995 ◽  
Vol 117 (4) ◽  
pp. 483-493 ◽  
Author(s):  
Graeme W. Milton ◽  
Andrej V. Cherkaev

It is shown that any given positive definite fourth order tensor satisfying the usual symmetries of elasticity tensors can be realized as the effective elasticity tensor of a two-phase composite comprised of a sufficiently compliant isotropic phase and a sufficiently rigid isotropic phase configured in an suitable microstructure. The building blocks for constructing this composite are what we call extremal materials. These are composites of the two phases which are extremely stiff to a set of arbitrary given stresses and, at the same time, are extremely compliant to any orthogonal stress. An appropriately chosen subset of the extremal materials are layered together to form the composite with elasticity tensor matching the given tensor.


Sign in / Sign up

Export Citation Format

Share Document