Topology Optimisation of Continuum Structures

Author(s):  
Federico Maria Ballo ◽  
Massimiliano Gobbi ◽  
Giampiero Mastinu ◽  
Giorgio Previati
2017 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Archana B. ◽  
Chandrasekhar K.N.V. ◽  
Rao T. Muralidhara ◽  
◽  
◽  
...  

2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


2016 ◽  
Vol 846 ◽  
pp. 535-540
Author(s):  
David J. Munk ◽  
David W. Boyd ◽  
Gareth A. Vio

Designing structures with frequency constraints is an important task in aerospace engineering. Aerodynamic loading, gust loading, and engine vibrations all impart dynamic loads upon an airframe. To avoid structural resonance and excessive vibration, the natural frequencies of the structure must be shifted away from the frequency range of any dynamic loads. Care must also be taken to ensure that the modal frequencies of a structure do not coalesce, which can lead to dramatic structural failure. So far in industry, no aircraft lifting surfaces are designed from the ground up with frequency optimisation as the primary goal. This paper will explore computational methods for achieving this task.This paper will present a topology optimisation algorithm employing the Solid Isotropic Microstructure with Penalisation (SIMP) method for the design of an optimal aircraft wing structure for rejection of frequency excitation.


Sign in / Sign up

Export Citation Format

Share Document