Investigation of the Recovery Mode with Different Transformation Coefficients of the Autotransformer Reverse Rectifier and Harmonic Components of the Network with an Optimally Selected Transformation Coefficient

Author(s):  
Tatyana Sinyukova ◽  
Alexey Sinyukov ◽  
Vladimir Dotsenko ◽  
Alfred Safin ◽  
Viktor Meshcheryakov
2009 ◽  
Vol 129 (12) ◽  
pp. 1504-1512
Author(s):  
Tsuyoshi Harimoto ◽  
Hidemi Hayashi ◽  
Katsuaki Murata

2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


Author(s):  
В. М. Мойсишин ◽  
M. V. Lyskanych ◽  
R. A. Zhovniruk ◽  
Ye. P. Majkovych

The purpose of the proposed article is to establish the causes of oscillations of drilling tool and the basic laws of the distribution of the total energy of the process of changing the axial dynamic force over frequencies of spectrum. Variable factors during experiments on the classical plan were the rigidity of drilling tool and the hardness of the rock. According to the results of research, the main power of the process of change of axial dynamic force during drilling of three roller cone bits is in the frequency range 0-32 Hz in which three harmonic frequency components are allocated which correspond to the theoretical values of low-frequency and gear oscillations of the chisel and proper oscillations of the bit. The experimental values of frequencies of harmonic components of energy and normalized spectrum as well as the magnitude of the dispersion of the axial dynamic force and its normalized values at these frequencies are presented. It has been found that with decreasing rigidity of the drilling tool maximum energy of axial dynamic force moves from the low-frequency oscillation region to the tooth oscillation area, intensifying the process of rock destruction and, at the same time, protecting the tool from the harmful effects of the vibrations of the bit. Reducing the rigidity of the drilling tool protects the bit from the harmful effects of the vibrations generated by the stand. The energy reductions in these fluctuations range from 47 to 77%.


2020 ◽  
pp. 107754632098246
Author(s):  
Peiling Cui ◽  
Fanjun Zheng ◽  
Xinxiu Zhou ◽  
Wensi Li

Permanent magnet synchronous motor always suffers from air gap field distortion and inverter nonlinearity, which lead to the harmonic components in motor currents. A resonant controller is a remarkable control method to eliminate periodic disturbance, whereas the conventional resonant controller is limited by narrow bandwidth and phase lag. This article presents a novel resonant controller with a precise phase compensation method for a permanent magnet synchronous motor to suppress the current harmonics. Based on the analysis of the current harmonic characteristics, the proposed resonant controller for rejecting a set of selected current harmonic components is plugged in the current loop, and it is parallel to the traditional proportional–integral controller. Furthermore, the stability analysis of the proposed resonant controller is investigated, and the parameters are tuned to get a satisfactory performance. Compared with the conventional resonant controller, the proposed resonant controller can achieve good steady-state performance, dynamic performance, and frequency adaptivity performance, simultaneously. Finally, the experimental results demonstrate the effectiveness of the proposed suppression scheme.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 489
Author(s):  
Vanessa Sohrt ◽  
Sebastian S.V. Hein ◽  
Edgar Nehlsen ◽  
Thomas Strotmann ◽  
Peter Fröhle

Estuaries are often modified by human activities. Adjustments in the morphology of an estuary have a potential impact on the hydrodynamics and on the reflection behavior of the tide. The influence of such system changes on the complex tidal regime with a large number of superimposed tidal constituents is not fully understood yet. The reflection properties of estuaries that are characterized by abrupt changes in geometry are systematically investigated on the basis of simplified estuary model approaches to improve the understanding of the oscillation and reflection behavior of tidal waves in estuaries. The reflection coefficients at abrupt cross-sectional changes are determined by two different methods, i.e., an analytical energy-based approach and a hydrodynamic numerical (HN) model. Comparisons indicate a high agreement of the results of the different methods when evaluating the reflection coefficient. The tidal constituents are reflected at partial and total reflectors and amplified by shoaling depending on the water depths, the height of the bottom step and the horizontal constriction. A harmonic analysis of simulated water level data partly shows the formation and amplification of higher harmonic components as a result of shallow water effects. The interaction with reflectors results in an increasing amplification of the tidal constituents and the tide.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


Sign in / Sign up

Export Citation Format

Share Document