Machine and Deep Learning Algorithms for Wearable Health Monitoring

Author(s):  
Chengwei Fei ◽  
Rong Liu ◽  
Zihao Li ◽  
Tianmin Wang ◽  
Faisal N. Baig
2021 ◽  
Vol 255 ◽  
pp. 106604
Author(s):  
Luca Rosafalco ◽  
Matteo Torzoni ◽  
Andrea Manzoni ◽  
Stefano Mariani ◽  
Alberto Corigliano

2019 ◽  
Vol 2 (Special Issue on First SACEE'19) ◽  
pp. 77-112 ◽  
Author(s):  
Khalid Mosalam ◽  
Sifat Muin ◽  
Yuqing Gao

This paper presents two on-going efforts of the Pacific Earthquake Engineering Research (PEER) center in the area of structural health monitoring. The first is data-driven damage assessment, which focuses on using data from instrumented buildings to compute the values of damage features. Using machine learning algorithms, these damage features are used for rapid identification of the level and location of damage after earthquakes. One of the damage features identified to be highly efficient is the cumulative absolute velocity. The second is vision-based automated damage identification and assessment from images. Deep learning techniques are used to conduct several identification tasks from images, examples of which are the structural component type, and level and type of damage. The objective is to use crowdsourcing, allowing the general public to take photographs of damage and upload them to a server where damage is automatically identified using deep learning algorithms. The paper also introduces PEER.s effort and preliminary results in engaging the engineering and computer science communities in such developments through the PEER Hub Image-Net (F-Net) challenge.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2021 ◽  
Vol 35 ◽  
pp. 100825
Author(s):  
Mahdi Panahi ◽  
Khabat Khosravi ◽  
Sajjad Ahmad ◽  
Somayeh Panahi ◽  
Salim Heddam ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


Sign in / Sign up

Export Citation Format

Share Document