Remembering Both the Machine and the Crowd When Sampling Points: Active Learning for Semantic Segmentation of ALS Point Clouds

Author(s):  
Michael Kölle ◽  
Volker Walter ◽  
Stefan Schmohl ◽  
Uwe Soergel
Author(s):  
M. Kölle ◽  
V. Walter ◽  
S. Schmohl ◽  
U. Soergel

Abstract. Automated semantic interpretation of 3D point clouds is crucial for many tasks in the domain of geospatial data analysis. For this purpose, labeled training data is required, which has often to be provided manually by experts. One approach to minimize effort in terms of costs of human interaction is Active Learning (AL). The aim is to process only the subset of an unlabeled dataset that is particularly helpful with respect to class separation. Here a machine identifies informative instances which are then labeled by humans, thereby increasing the performance of the machine. In order to completely avoid involvement of an expert, this time-consuming annotation can be resolved via crowdsourcing. Therefore, we propose an approach combining AL with paid crowdsourcing. Although incorporating human interaction, our method can run fully automatically, so that only an unlabeled dataset and a fixed financial budget for the payment of the crowdworkers need to be provided. We conduct multiple iteration steps of the AL process on the ISPRS Vaihingen 3D Semantic Labeling benchmark dataset (V3D) and especially evaluate the performance of the crowd when labeling 3D points. We prove our concept by using labels derived from our crowd-based AL method for classifying the test dataset. The analysis outlines that by labeling only 0:4% of the training dataset by the crowd and spending less than 145 $, both our trained Random Forest and sparse 3D CNN classifier differ in Overall Accuracy by less than 3 percentage points compared to the same classifiers trained on the complete V3D training set.


Author(s):  
M. Kölle ◽  
D. Laupheimer ◽  
V. Walter ◽  
N. Haala ◽  
U. Soergel

Abstract. Semantic interpretation of multi-modal datasets is of great importance in many domains of geospatial data analysis. However, when training models for automated semantic segmentation, labeled training data is required and in case of multi-modality for each representation form of the scene. To completely avoid the time-consuming and cost-intensive involvement of an expert in the annotation procedure, we propose an Active Learning (AL) pipeline where a Random Forest classifier selects a subset of points sufficient for training and where necessary labels are received from the crowd. In this AL loop, we aim on coupled semantic segmentation of an Airborne Laser Scanning (ALS) point cloud and the corresponding 3D textured mesh generated from LiDAR data and imagery in a hybrid manner. Within this work we pursue two main objectives: i) We evaluate the performance of the AL pipeline applied to an ultra-high resolution ALS point cloud and a derived textured mesh (both benchmark datasets are available at https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx). ii) We investigate the capabilities of the crowd regarding interpretation of 3D geodata and observed that the crowd performs about 3 percentage points better when labeling meshes compared to point clouds. We additionally demonstrate that labels received solely by the crowd can power a machine learning system only differing in Overall Accuracy by less than 2 percentage points for the point cloud and less than 3 percentage points for the mesh, compared to using the completely labeled training pool. For deriving this sparse training set, we ask the crowd to label 0.25 % of available training points, resulting in costs of 190 $.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1819
Author(s):  
Tiandong Shi ◽  
Deyun Zhong ◽  
Liguan Wang

The effect of geological modeling largely depends on the normal estimation results of geological sampling points. However, due to the sparse and uneven characteristics of geological sampling points, the results of normal estimation have great uncertainty. This paper proposes a geological modeling method based on the dynamic normal estimation of sparse point clouds. The improved method consists of three stages: (1) using an improved local plane fitting method to estimate the normals of the point clouds; (2) using an improved minimum spanning tree method to redirect the normals of the point clouds; (3) using an implicit function to construct a geological model. The innovation of this method is an iterative estimation of the point cloud normal. The geological engineer adjusts the normal direction of some point clouds according to the geological law, and then the method uses these correct point cloud normals as a reference to estimate the normals of all point clouds. By continuously repeating the iterative process, the normal estimation result will be more accurate. Experimental results show that compared with the original method, the improved method is more suitable for the normal estimation of sparse point clouds by adjusting normals, according to prior knowledge, dynamically.


2021 ◽  
Vol 13 (15) ◽  
pp. 3021
Author(s):  
Bufan Zhao ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Xiaoxing He ◽  
Weixing Xue ◽  
...  

Urban object segmentation and classification tasks are critical data processing steps in scene understanding, intelligent vehicles and 3D high-precision maps. Semantic segmentation of 3D point clouds is the foundational step in object recognition. To identify the intersecting objects and improve the accuracy of classification, this paper proposes a segment-based classification method for 3D point clouds. This method firstly divides points into multi-scale supervoxels and groups them by proposed inverse node graph (IN-Graph) construction, which does not need to define prior information about the node, it divides supervoxels by judging the connection state of edges between them. This method reaches minimum global energy by graph cutting, obtains the structural segments as completely as possible, and retains boundaries at the same time. Then, the random forest classifier is utilized for supervised classification. To deal with the mislabeling of scattered fragments, higher-order CRF with small-label cluster optimization is proposed to refine the classification results. Experiments were carried out on mobile laser scan (MLS) point dataset and terrestrial laser scan (TLS) points dataset, and the results show that overall accuracies of 97.57% and 96.39% were obtained in the two datasets. The boundaries of objects were retained well, and the method achieved a good result in the classification of cars and motorcycles. More experimental analyses have verified the advantages of the proposed method and proved the practicability and versatility of the method.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1365
Author(s):  
Tao Zheng ◽  
Zhizhao Duan ◽  
Jin Wang ◽  
Guodong Lu ◽  
Shengjie Li ◽  
...  

Semantic segmentation of room maps is an essential issue in mobile robots’ execution of tasks. In this work, a new approach to obtain the semantic labels of 2D lidar room maps by combining distance transform watershed-based pre-segmentation and a skillfully designed neural network lidar information sampling classification is proposed. In order to label the room maps with high efficiency, high precision and high speed, we have designed a low-power and high-performance method, which can be deployed on low computing power Raspberry Pi devices. In the training stage, a lidar is simulated to collect the lidar detection line maps of each point in the manually labelled map, and then we use these line maps and the corresponding labels to train the designed neural network. In the testing stage, the new map is first pre-segmented into simple cells with the distance transformation watershed method, then we classify the lidar detection line maps with the trained neural network. The optimized areas of sparse sampling points are proposed by using the result of distance transform generated in the pre-segmentation process to prevent the sampling points selected in the boundary regions from influencing the results of semantic labeling. A prototype mobile robot was developed to verify the proposed method, the feasibility, validity, robustness and high efficiency were verified by a series of tests. The proposed method achieved higher scores in its recall, precision. Specifically, the mean recall is 0.965, and mean precision is 0.943.


2022 ◽  
Vol 193 ◽  
pp. 106653
Author(s):  
Hejun Wei ◽  
Enyong Xu ◽  
Jinlai Zhang ◽  
Yanmei Meng ◽  
Jin Wei ◽  
...  

Author(s):  
X.-F. Xing ◽  
M. A. Mostafavi ◽  
G. Edwards ◽  
N. Sabo

<p><strong>Abstract.</strong> Automatic semantic segmentation of point clouds observed in a 3D complex urban scene is a challenging issue. Semantic segmentation of urban scenes based on machine learning algorithm requires appropriate features to distinguish objects from mobile terrestrial and airborne LiDAR point clouds in point level. In this paper, we propose a pointwise semantic segmentation method based on our proposed features derived from Difference of Normal and the features “directional height above” that compare height difference between a given point and neighbors in eight directions in addition to the features based on normal estimation. Random forest classifier is chosen to classify points in mobile terrestrial and airborne LiDAR point clouds. The results obtained from our experiments show that the proposed features are effective for semantic segmentation of mobile terrestrial and airborne LiDAR point clouds, especially for vegetation, building and ground classes in an airborne LiDAR point clouds in urban areas.</p>


Author(s):  
F. Politz ◽  
M. Sester

<p><strong>Abstract.</strong> Over the past years, the algorithms for dense image matching (DIM) to obtain point clouds from aerial images improved significantly. Consequently, DIM point clouds are now a good alternative to the established Airborne Laser Scanning (ALS) point clouds for remote sensing applications. In order to derive high-level applications such as digital terrain models or city models, each point within a point cloud must be assigned a class label. Usually, ALS and DIM are labelled with different classifiers due to their varying characteristics. In this work, we explore both point cloud types in a fully convolutional encoder-decoder network, which learns to classify ALS as well as DIM point clouds. As input, we project the point clouds onto a 2D image raster plane and calculate the minimal, average and maximal height values for each raster cell. The network then differentiates between the classes ground, non-ground, building and no data. We test our network in six training setups using only one point cloud type, both point clouds as well as several transfer-learning approaches. We quantitatively and qualitatively compare all results and discuss the advantages and disadvantages of all setups. The best network achieves an overall accuracy of 96<span class="thinspace"></span>% in an ALS and 83<span class="thinspace"></span>% in a DIM test set.</p>


Sign in / Sign up

Export Citation Format

Share Document