scholarly journals Ethical Issues of AI

Author(s):  
Bernd Carsten Stahl

AbstractThis chapter discusses the ethical issues that are raised by the development, deployment and use of AI. It starts with a review of the (ethical) benefits of AI and then presents the findings of the SHERPA project, which used case studies and a Delphi study to identify what people perceived to be ethical issues. These are discussed using the categorisation of AI technologies introduced earlier. Detailed accounts are given of ethical issues arising from machine learning, from artificial general intelligence and from broader socio-technical systems that incorporate AI.

Author(s):  
Bernd Carsten Stahl

AbstractA discussion of the ethics of artificial intelligence hinges on the definition of the term. In this chapter I propose three interrelated but distinct concepts of AI, which raise different types of ethical issues. The first concept of AI is that of machine learning, which is often seen as an example of “narrow” AI. The second concept is that of artificial general intelligence standing for the attempt to replicate human capabilities. Finally, I suggest that the term AI is often used to denote converging socio-technical systems. Each of these three concepts of AI has different properties and characteristics that give rise to different types of ethical concerns.


Author(s):  
Margaret A. Boden

A host of state-of-the-art AI applications exist, designed for countless specific tasks and used in almost every area of life, by laymen and professionals alike. Many outperform even the most expert humans. In that sense, progress has been spectacular. But the AI pioneers were also hoping for systems with general intelligence. ‘General intelligence as the Holy Grail’ explains why artificial general intelligence is still highly elusive despite recent increases in computer power. It considers the general AI strategies in recent research—heuristics, planning, mathematical simplification, and different forms of knowledge representation—and discusses the concepts of the frame problem, agents and distributed cognition, machine learning, and generalist systems.


Information ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 332 ◽  
Author(s):  
Paul Walton

Artificial intelligence (AI) and machine learning promise to make major changes to the relationship of people and organizations with technology and information. However, as with any form of information processing, they are subject to the limitations of information linked to the way in which information evolves in information ecosystems. These limitations are caused by the combinatorial challenges associated with information processing, and by the tradeoffs driven by selection pressures. Analysis of the limitations explains some current difficulties with AI and machine learning and identifies the principles required to resolve the limitations when implementing AI and machine learning in organizations. Applying the same type of analysis to artificial general intelligence (AGI) highlights some key theoretical difficulties and gives some indications about the challenges of resolving them.


2019 ◽  
Author(s):  
Сергей Шумский ◽  
Sergey Shumskiy

This book is about the nature of mind, both human and artificial, from the standpoint of the theory of machine learning. It addresses the problem of creating artificial general intelligence. The author shows how one can use the basic mechanisms of our brain to create artificial brains of future robots. How will this ever-stronger artificial intelligence fit into our lives? What awaits us in the next 10-15 years? How can someone who wants to take part in a new scientific revolution, participate in developing a new science of mind?


2021 ◽  
pp. 027836492098785
Author(s):  
Julian Ibarz ◽  
Jie Tan ◽  
Chelsea Finn ◽  
Mrinal Kalakrishnan ◽  
Peter Pastor ◽  
...  

Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low-level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulated control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time, real-world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn: as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.


2021 ◽  
pp. 1-6
Author(s):  
Scott McLean ◽  
Gemma J. M. Read ◽  
Jason Thompson ◽  
P. A. Hancock ◽  
Paul M. Salmon

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew K. C. Wong ◽  
Pei-Yuan Zhou ◽  
Zahid A. Butt

AbstractMachine Learning has made impressive advances in many applications akin to human cognition for discernment. However, success has been limited in the areas of relational datasets, particularly for data with low volume, imbalanced groups, and mislabeled cases, with outputs that typically lack transparency and interpretability. The difficulties arise from the subtle overlapping and entanglement of functional and statistical relations at the source level. Hence, we have developed Pattern Discovery and Disentanglement System (PDD), which is able to discover explicit patterns from the data with various sizes, imbalanced groups, and screen out anomalies. We present herein four case studies on biomedical datasets to substantiate the efficacy of PDD. It improves prediction accuracy and facilitates transparent interpretation of discovered knowledge in an explicit representation framework PDD Knowledge Base that links the sources, the patterns, and individual patients. Hence, PDD promises broad and ground-breaking applications in genomic and biomedical machine learning.


Sign in / Sign up

Export Citation Format

Share Document