Finite Element Modeling and Validation of Metal Deposition in Wire Arc Additive Manufacturing
AbstractWire arc additive manufacturing allows the production of metallic parts by depositing beads of weld metal using arc-welding technologies. This low-cost additive manufacturing technology has the ability to manufacture large-scale parts at a high deposition rate. However, the quality of the obtained parts is greatly affected by the various thermal phenomena present during the manufacturing process. Numerical simulation remains an effective tool for studying such phenomena. In this work, a new finite element technique is proposed in order to model metal deposition in WAAM process. This technique allows to gradually construct the mesh representing the deposited regions along the deposition path. The heat source model proposed by Goldak is adapted and combined with the proposed metal deposition technique taking into account the energy distribution between filler material and the molten pool. The effectiveness of the proposed method is validated by series of experiments, of which an example is detailed in this paper.