powder injection moulding
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4183
Author(s):  
Alberto Basso ◽  
Yang Zhang ◽  
Jacob Kjeldahl Pløger ◽  
Jon Spangenberg ◽  
Hans Nørgaard Hansen

Freeform injection moulding is a novel technology for powder injection moulding where a sacrificial 3D printed mould (i.e., a soft tooling) is used as an insert in the injection process. The use of 3D printed moulds enable a higher geometrical design flexibility as compared to the conventional injection moulding process. However, there is still very limited knowledge on how the sacrificial soft tooling material and powder suspension handles the increased geometrical complexity during the process. In this study, a stainless steel powder suspension is injected into a geometrically challenging sacrificial mould (viz. a helix structure) that is produced by vat photopolymerization additive manufacturing. Computed tomography is used to quantify the geometrical precision of the mould both before and after injection. In addition, a new numerical model that considers the suspension feedstock is developed to investigate the powder injection moulding process. The numerical results are found to be in qualitative good agreement with the experimental findings in terms of pinpointing critical areas of the structure, thereby highlighting a new pathway for evaluating sacrificial inserts for powder injection moulding with a high geometrical complexity.


2021 ◽  
Vol 904 ◽  
pp. 213-220
Author(s):  
Tapany Patcharawit ◽  
Phongsathon Thongbo ◽  
Nitithorn Sengna ◽  
Piyanat Auttachon ◽  
Nutthita Chuankrerkkul

Metal matrix composite has been increasingly appreciated by many engineering applications due it its tailored properties for specific uses. Powder injection moulding is one of the most effective composite processing essentially for small and complex parts. Moulding of feedstock is the key step determining green and sintered properties. This research investigated effects of moulding parameters which are % solid loading and moulding speed on microstructure and properties of aluminium composite. Commercial aluminium alloy powder and SiC particulate at 15 vol.% addition were formulated at 55 % and 60 % solid loading. Injection moulding were operated using a horizontal screw driven typed machine at 1600-1800 rpm speed and 280 - 300 °C moulding temperature. After sintering at 655 °C, property assessment via microstructure, density, % shrinkage, distortion and hardness were carried out. It was found that feedstock of 55 % solid loading occasionally led to flash problem while that of higher solid loading experienced higher viscosity to fulfill four-cavity mould. Moulding speed investigated did not significantly affect mould filling and overall properties. Sintered microstructures generally showed well-distributed SiC particulate in the aluminium matrix. The optimum injection moulding condition was the feedstock prepared at 60% solid loading, moulding at 1800 rpm speed, which offered theoretical density of greater than 98.5 % and micro Vickers hardness of 125.2 Hv.


Author(s):  
Fábio Cerejo ◽  
Daniel Gatões ◽  
M. T. Vieira

AbstractAdditive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder, and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


2021 ◽  
Author(s):  
Fábio Silva Cerejo ◽  
Daniel Gatões ◽  
Teresa Vieira

Abstract Additive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material Extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


2021 ◽  
Vol 15 (1) ◽  
pp. 47-57
Author(s):  
Can Wang ◽  
Bijun Fang ◽  
Shuai Zhang ◽  
Xiaolong Lu ◽  
Jianning Ding

To improve densification of the (Ba0.85Ca0.15)(Hf0.1Ti0.9)O3 (BCHT) ceramics prepared via powder injection moulding, MnO2 and Li2CO3 were used as sintering aids. The BCHT ceramics doped with different Mn- and Li-amount prepared by powder injection moulding in which paraffin was used as injection binder, have rather pure perovskite structure with complicated polymorphic ferroelectric phase coexistence. Polyhedral grains combined with nearly round shape grains with increased relative density and larger gains size were obtained at appropriate doping amount, related to the formation of liquid phase during sintering and increased mobility of ions due to the generation of point defects caused by heterovalent cations doping. TheMn- and Li-doped BCHT ceramics are displacement driven ferroelectrics with apparent diffused transition characteristic at different extent, relating to the morphotropic phase boundary composition and the variation of point defects induced by doping. Comparable or surpassing electrical performance was acquired, especially the dielectric breakdown strength was increased due to the improved sinterability. With appropriate doping amount, piezoelectricity larger than 300 pC/N can be obtained in the Mn- and Li-doped BCHT ceramics poled under low electric field.


2021 ◽  
Vol 58 (1) ◽  
pp. 32-47
Author(s):  
J. Ott ◽  
A. Burghardt ◽  
D. Britz ◽  
S. Majauskaite ◽  
F. Mücklich

Abstract This work will present possibilities for the characterization of copper powder green bodies and sintered copper microstructures during pressureless sintering. The introduction of new parameters to microstructural characterization based on qualitative and quantitative microstructural analysis will facilitate the systematic optimization of the sintering process. As a result of the specific evaluation of the microstructure evolution, conventional isothermal sintering could be successfully replaced by multi-step temperature profiles, thus achieving sintering densities of more than 99 % by simultaneously reducing process time. This systematic optimization of the sintering process of Cu through specific microstructural analysis may now be applied to sinter-based manufacturing technologies such as Binder Jetting and Metal Powder Injection Moulding, enabling the manufacture of complex and highly conductive Cu parts for applications in electronics.


2020 ◽  
pp. 1-9
Author(s):  
Raphaël Côté ◽  
Mohamed Azzouni ◽  
Oussema Ghanmi ◽  
Sarthak Kapoor ◽  
Vincent Demers

Sign in / Sign up

Export Citation Format

Share Document