A Comparison of the CMM and Measuring Scanner for Printing Products Geometry Measurement

Author(s):  
Almira Softić ◽  
Hazim Bašić ◽  
Kenan Baljić
Keyword(s):  
2013 ◽  
Vol 779-780 ◽  
pp. 1007-1014
Author(s):  
Cang Su Xu ◽  
Qi Yuan Luo ◽  
Jian Ma ◽  
Fang Qi ◽  
Yi Fan Xu

The performance and emission characteristics of diesel engines are largely governed by fuel atomization and spray processes which in turn are strongly influenced by the flow dynamics inside the injector nozzle. Accurate measurement of the nozzle geometry is important for the study of the flow dynamics. Using the third-generation synchrontron radiation light source of the ShangHai Light Source (SSRF), the research team successfully captured the internal structure images of the single hole nozzle and multi-hole nozzle. According to the captured images, the researchers clearly observed the internal structure of nozzle as well as the sac region. The diameter and length of the nozzles and orifice angle were also be accurately measured.


Author(s):  
Denis Zinchenko ◽  
Vyacheslav Prokopiev ◽  
Pavel Kochkin ◽  
Sergey Kolchanov ◽  
Arkadiy Zelyutkov ◽  
...  
Keyword(s):  

Author(s):  
Masood Taheri Andani ◽  
Andrew Peterson ◽  
Josh Munoz ◽  
Mehdi Ahmadian

The application of Doppler-based LIght Detection and Ranging (LIDAR) technology for determining track curvature and lateral irregularities, including alignment and gage variation, are investigated. The proposed method uses track measurements by two low-elevation, slightly tilted LIDAR sensors nominally pointed at the rail gage face on each track. The Doppler LIDAR lenses are installed with a slight forward angle to measure track speed in both longitudinal and lateral directions. The lateral speed measurements are processed for assessing the track gage and alignment variations, using a method that is based on the frequency bandwidth dissimilarities between the vehicle speed and track geometry irregularity. Using the results from an extensive series of tests with a body-mounted Doppler LIDAR system on-board a track geometry measurement railcar, the study indicates a close match between the LIDAR measurements and those made with existing sensors on-board the railcar. The field testing conducted during this study indicates that LIDAR sensors could provide a reliable, non-contact track monitoring instrument for field use in various weather and track conditions, potentially in a semi-autonomous or autonomous manner.


Author(s):  
Joseph W. Palese ◽  
Sergio DiVentura ◽  
Ken Hill ◽  
Peter Maurice

Maintaining track geometry is key to the safe and efficient operations of a railroad. Failure to properly maintain geometry can lead to costly track structure failures or even more costly derailments. Currently, there exists a number of different methods for measuring track geometry and then if required, maintaining the track to return track geometry to specified levels of acceptance. Because of this need to have proper track geometry, tampers are one of the most common pieces of maintenance equipment in a railroad operation’s fleet. It is therefore paramount from both a cost and track time perspective to gain maximum efficiency from any one particular tamper. Track geometry is typically measured through a variety of contact and non-contact measurement systems which can mount on a variety of different platforms. With respect to a tamper, a push buggy projector system is typically used to measure track geometry, utilizing the tamper body as the basis for the reference system, Track geometry can be measured utilizing this technology during a prerecording run. Then, the software onboard the tamper analyzes the recorded data to determine the best fit and calculate throws that achieve a better track alignment, particularly in curves. During the tamping operation, the tamper buggy system and frame adjust the track. Due to its design, track geometry measurements can only be made at low speed (roughly 4mph) which can severely affect the efficiency of the tamper. To help decrease pre maintenance inspection times, an inertial based track geometry measurement system has been developed and integrated into the tamper’s operating software. This system can mount directly to the frame of a tamper and operate at hy-rail to very low speeds. Measurements made can be fed directly into the tamper control system to guide where and how track geometry adjustments need to be made. In addition, the capability to collect data during travel mode without the buggies extended allows for the collection of data at any time. Thus, data can be recorded when traveling back and forth to a stabling location, before and/or after grinding. This allows for synchronization of data at a later time to utilize for adjusting the track. Also, data can be collected post-work to allow for the comparison of pre and post geometry to allow for the determination of the effectiveness of a given tamping operation. Tampers equipped with this track geometry system facilitate the foundation for an enterprise solution. Data that is measured and collected can be sent to a cloud service, in real time that will provide exception reports, health status, and rail health trend analyses. Utilizing the available technology further optimizes response time in track maintenance. This paper will introduce this new method of mounting and completely integrating an inertial based track geometry system onto a tamper. In addition, studies will be presented which confirm the ability of this system to replicate the tamper’s projection based track geometry system. Finally, a comprehensive study on efficiency gains will be presented directly comparing a standard method of maintaining a segment via a tamper to this new method of using onboard inertial track geometry measurement.


Author(s):  
W. Frackowiak ◽  
S. Barton ◽  
W. Reimche ◽  
O. Bruchwald ◽  
D. Zaremba ◽  
...  

Engine maintenance and repair is a large part of the total airplane operating cost. Routine maintenance is essential for providing a positive impact on lifetime, engine performance and reliability. The sector of on-wing and near-wing maintenance is growing because of its potential to reduce the expenses and inspection time, with diagnostics taking place close to the airplane or inside a hangar on the airport. Due to the high complexity of modern jet engines, this task creates special needs towards the measurement systems regarding flexibility and robustness. This paper describes four design approaches of such measurement systems to determine the engine parts’ health status with complex geometries in narrow or occluded spaces between blades and individual discs. The utilized nondestructive technologies are endoscopic fringe projection for geometry measurement, adapted low coherence interferometry to determine surface microstructures, high frequency inductive thermography with an optical mirror and miniaturized high frequency eddy current testing for inspection of the protection coating system and for the detection of subsurface cracks and defects. The inspection information obtained by all these techniques can be further used for regeneration process simulations and functional simulations to predict the optimal overhaul strategy.


Clay Minerals ◽  
1982 ◽  
Vol 17 (3) ◽  
pp. 313-325 ◽  
Author(s):  
D. M. Oakley ◽  
B. R. Jennings

AbstractUnder the influence of a pulsed field, dilute clay sols become birefringent as the particles undergo orientational order. The rate of decay of the birefringence on removal of the field is characteristic of the particle geometry. Measurement of the decay rates under two specific experimental conditions provides sufficient information from which the particle-size distribution can be evaluated in terms of a two-parameter function. Experimental data are reported and analysed in terms of a log-normal distribution of particle sizes for attapulgite (rods), kaolinite (discs) and halloysite (ellipsoids) sols and compared with success to electron microscopic data. The ability of the method to determine size distributions in terms of the major dimensions of the clay particles, rather than those of the often used equivalent sphere, is highlighted.


Author(s):  
Soheil Saadat ◽  
Cameron Stuart ◽  
Gary Carr ◽  
James Payne

The Federal Railroad Administration’s (FRA’s) Office of Research and Development has undertaken a multi-phase research program focused on the development and advancement of Autonomous Track Geometry Measurement Systems (ATGMS) and related technologies to improve rail safety by increasing the availability of track geometry data for safety and maintenance planning purposes. Benefits of widespread use of ATGMS technology include reduced life-cycle cost of inspection operations, minimized interference with revenue operations, and increased inspection frequencies. FRA’s Office of Research and Development ATGMS research program results have demonstrated that the paradigm of track inspection and maintenance practices, information management and, eventually, government regulations will change as a result of widespread use of ATGMS technology by the industry. A natural consequence of increased inspection frequencies associated with ATGMS is the large amount of actionable information produced. Therefore, changing existing maintenance practices to address a larger number of identified track issues across large geographic areas will be a challenge for the industry. In addition, managing ATGMS data and assessing the quality of this information in a timely manner will be challenging. This paper presents an overview of the FRA’s ATGMS research program with emphasis on its evolution from a proof-of-concept prototype to a fully operational measurement system. It presents the evolution of ATGMS technology over time including the development of a web-based application for data editing, management and quality assurance. Finally, it presents FRA’s vision for the future of the ATGMS technology.


Author(s):  
Ahmad Radmehr ◽  
Arash Hosseinian Ahangarnejad ◽  
Yu Pan ◽  
SayedMohammad Hosseini ◽  
Ali Tajaddini ◽  
...  

Abstract This study evaluates the wheel-rail contact patch geometry of the VT-FRA roller rig, designed and commissioned at the Virginia Tech’s Railway Technologies Laboratory (RTL). Contact patch measurements are crucial for better analyzing the underlying factors that affect the wheel-rail interface (WRI) contact mechanics and dynamics. One of the challenges is in determining the size and pressure distribution at the contact patch, under various conditions. Although past studies have attempted to reach a method that can be used to make such measurements, more research is needed in reaching a practical and consistent method. This is particularly true for making the measurements under dynamic conditions. The use of pressure sensitive films was considered as the means for contact patch measurements on the VT-FRA rig, however, the thickness of the film influences the contact patch area and shape. This paper provides the results of the measurements with films with different range of pressure sensitivities. Three types of pressure-sensitive films are used under static conditions. The films are placed in between the wheel and roller in exact positions to enable comparing the test results for various wheel loads. The contact patch measured by the most sensitive film, which reacts to pressures as low as 0.5 MPa, provides the most accurate outline for the contact patch, although it does not provide the highest resolution for the pressure distribution. The other pressure-sensitive films that are used have a higher pressure range, with minimums of 49.0 MPa and 127.6 MPa. The relationship between the size of the contact patch and average contact pressure is evaluated as a function of the wheel load. The results indicate that with increasing wheel load, the size of the contact patch changes minimally, with the average pressure increasing in a nearly linear relationship to the wheel load as expected.


Sign in / Sign up

Export Citation Format

Share Document