Data Driven Policy Making: The Peruvian Water Resources Observatory

Author(s):  
Giuliana Barnuevo ◽  
Elsa Galarza ◽  
Maria Paz Herrera ◽  
Juan G. Lazo Lazo ◽  
Miguel Nunez-del-Prado ◽  
...  
2011 ◽  
Vol 63 (6) ◽  
pp. 1099-1110 ◽  
Author(s):  
R. Giné Garriga ◽  
A. Pérez Foguet

The Water Poverty Index (WPI) has been recognized as a useful tool in policy analysis. The index integrates various physical, social and environmental aspects to enable more holistic assessment of water resources. However, soundness of this tool relies on two complementary aspects: (i) inadequate techniques employed in index construction would produce unreliable results, and (ii) poor dissemination of final outcome would reduce applicability of the index to influence policy-making. From a methodological point of view, a revised alternative to calculate the index was developed in a previous study. This paper is therefore concerned not with the method employed in index construction, but with how the composite can be applied to support decision-making processes. In particular, the paper examines different approaches to exploit the index as a policy tool. A number of alternatives to disseminate achieved results are presented. The implications of applying the composite at different spatial scales are highlighted. Turkana District, in Kenya has been selected as initial case study to test the applicability and validity of the index. The paper concludes that the WPI approach provides a relevant tool for guiding appropriate action and policy-making towards more equitable allocation of water resources.


Author(s):  
D. P. Solomatine

Traditionally, management and control of water resources is based on behavior-driven or physically based models based on equations describing the behavior of water bodies. Since recently models built on the basis of large amounts of collected data are gaining popularity. This modeling approach we will call data-driven modeling; it borrows methods from various areas related to computational intelligence—machine learning, data mining, soft computing, etc. The chapter gives an overview of successful applications of several data-driven techniques in the problems of water resources management and control. The list of such applications includes: using decision trees in classifying flood conditions and water levels in the coastal zone depending on the hydrometeorological data, using artificial neural networks (ANN) and fuzzy rule-based systems for building controllers for real-time control of water resources, using ANNs and M5 model trees in flood control, using chaos theory in predicting water levels for ship guidance, etc. Conclusions are drawn on the applicability of the mentioned methods and the future role of computational intelligence in modeling and control of water resources.


Author(s):  
Emad Hasan ◽  
Aondover Tarhule ◽  
Pierre-Emmanuel Kirstetter

This research assesses the changes in the total water storage (TWS) during the twentieth century and their future projections in the Nile River Basin (NRB) via TWSA (TWS anomalies) records from GRACE (Gravity Recovery and Climate Experiment), GRACE-FO (Follow-On), data-driven-reanalysis TWSA and land surface model (LSM), in association with precipitation, temperature records, and standard drought indicators. The analytical approach incorporates the development of 100+ yearlong TWSA records using a probabilistic conditional distribution fitting approach by the GAMLSS (Generalized Additive Model for Location, Scale, and Shape) model. The drought and flooding severity, duration, magnitude, frequencies, and recurrence were assessed during the studied period. The results showed, 1- The NRB between 2002 to 2020 has transited to substantial wetter conditions. 2- The TWSA reanalysis records between 1901 to 2002 revealed that the NRB had experienced a positive increase in TWS during the wet and dry seasons. 3- The projected TWSA between 2021 to 2050 indicated slight positive changes in TWSA during the rainy seasons. The analysis of drought and flooding frequencies between 1901 to 2050 indicated the NRB has ~64 dry-years compared to ~86 wet-years. The 100+ yearlong TWSA records assured that the NRB transited to wetter conditions relative to few dry spells. These TWSA trajectories call for further water resources planning in the region especially during flood seasons. This research contributes to the ongoing efforts to improve the TWSA assessment and its associated dynamics for transboundary river basins. It also demonstrates how an extended TWSA record provides unique insights for water resources management in the NRB and similar regions.


2019 ◽  
Vol 2 (2) ◽  
pp. 22-34
Author(s):  
Tabassom Sedighi

The Bayesian network (BN) method is one of the data-driven methods which have been successfully used to assist problem-solving in a wide range of disciplines including policy making, information technology, engineering, medicine, and more recently biology and ecology. BNs are particularly useful for diverse problems of varying size and complexity, where uncertainties are inherent in the system. BNs engage directly with subjective data in a transparent way and have become a state-of-the-art technology to support decision-making under uncertainty.


2020 ◽  
Author(s):  
Mohammadreza Alizadeh ◽  
Jan Adamowski ◽  
Julien Malard ◽  
Azhar Inam

<p>Water and environmental resources exist in complex and deeply uncertain systems of social-economic and environmental components.  As such, natural resource systems are impacted simultaneously by the diverse effects of many interacting human-environmental components. While conventional environmental planning commonly stresses estimation and prediction, preferring top-down initiatives and technocratic solutions, this approach often overlooks socio-economic impacts and interactions, leading to unexpected long-term outcomes. In response, it is now widely acknowledged that frameworks capturing the complex dynamics of society and the environment are needed to develop more sustainable environmental and water resources management strategies. Moreover, for robust policy-making, the performances of potential policies must be considered under multiple plausible conditions to enhance the chances of desired outcomes and limit the risk of undesirable results. This research addresses these challenges by considering deep uncertainty in coupled socio-economic and environmental systems.  In this study, a computational model-based approach to support adaptive decision-making under deep uncertainty is developed and applied to adaptive policy-making of sustainable water resources management for human-water systems in developing countries. The Rechna Doab region of Pakistan is considered as a case study. Qualitative-quantitative participatory exploratory modeling is performed by incorporating a physical-socioeconomic system dynamics model, a systematic scenario selection method and a scenario discovery approach.  The Driver-Pressure-State-Impact-Response (DPSIR) model is used through storytelling approaches to identify vulnerabilities in policy options in the coupled socio-economic and environmental system by considering its response to drivers, pressures, states, and impacts. Storytelling methods are used to develop qualitative storylines in order to support a detailed and stakeholder-led description of future adaptive management policies. The proposed methodology is used for systematic scenario discovery to uncover vulnerabilities across a range of possible futures and test the performance of stakeholder proposed policies. Also, the tradeoffs between water resources management alternatives, in terms of stakeholder objectives, and their robustness to deep uncertainty are assessed. The proposed approach simulates qualitative and quantitative cause-effect relationships between the environmental system and socio-economic interactions to assess candidate policies, their vulnerabilities and associated adaptive strategies.</p>


Sign in / Sign up

Export Citation Format

Share Document