A Scissor Mechanism Shear Mode Piezoelectric Energy Harvester for Windmill

Author(s):  
Tejkaran Narolia ◽  
Vijay K. Gupta ◽  
Ivan A. Parinov
2016 ◽  
Vol 28 (10) ◽  
pp. 1346-1357
Author(s):  
Vainatey Kulkarni ◽  
Frédéric Giraud ◽  
Christophe Giraud-Audine ◽  
Michel Amberg ◽  
Ridha Ben Mrad ◽  
...  

This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25  gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25  gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050008
Author(s):  
Tejkaran Narolia ◽  
Vijay K. Gupta ◽  
I. A. Parinov

A shear mode piezoelectric energy harvester for harvesting energy from rotary motion is developed. The kinetic energy in the form of rotation is converted into electrical form of energy by piezoelectric principle with oscillation of piezoelectric patch through magnetic shear force. Efforts have been made to increase the output power using shear mode of operation. In order to estimate the induced voltage of piezoelectric patch, a mathematical model and an Finite Element (FE) model are developed. Considering various parameters, optimization of the harvester was made. Analytical and Finite Element Method (FEM) results are compared and good agreement has been found. The total average output power of 358.44 W is generated when rotary speed of hub of about 600 RPM.


Author(s):  
V. Kulkarni ◽  
R. Ben-Mrad ◽  
S. Eswar Prasad

Energy harvesting devices are growing in popularity for their ability to capture the ambient energy surrounding a system and convert it into usable electrical energy. With an increasing demand for portable electronics and wireless sensors in a number of sectors, energy harvesting has the potential to create self-powered sensor systems operating in inaccessible locations. This paper discusses a torsion based piezoelectric energy harvester that utilizes superior shear mode piezoelectric properties to harvest energy from vibrations. Mathematical expressions are used to determine optimized geometry configurations for the harvester. Using these expressions, a harvester design is presented for use with wireless sensor networks.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
A. Aladwani ◽  
O. Aldraihem ◽  
A. Baz

An energy harvester operating in the thickness-mode (TMH) or longitudinal-mode (LMH) consists of a piezoelectric element which is sandwiched between a proof mass and a base. The piezo-element is poled along a direction perpendicular to the electrodes. When the base is subjected to a sinusoidal excitation, along the poling direction, a relative motion is generated between the proof mass and the base producing mechanical strain in the piezoelectric element. The resulting strain is converted into electrical power by virtue of the direct piezoelectric effect. In this study, a shear-mode harvester (SMH) is considered as a viable alternative to the TMH and LMH to enhance the harvested output power. The enhancement is generated by capitalizing on the fact that the strain constant of the piezoelectric in shear is much higher than those due to thickness or longitudinal deflections. To achieve such an enhancement, the piezoelectric element is poled along a direction parallel to its electrodes and is sandwiched between a proof mass and oscillating base in a design similar to that of the TMH and the LMH. Sinusoidal excitation of the base, along the poling direction, makes the piezo-element experience mechanical shear strain which when converted into electrical power produces outputs that are larger than those of the TMH and the LMH. The theory governing the operation of this class of SMH is developed for simple resistive electrical loads. Numerical examples are presented to illustrate the optimal performance characteristics of the SMH in comparison with the TMH and LMH. The effect of the piezo-element material, excitation frequency and electrical load on the harvested power is presented. The obtained results demonstrate the feasibility of the SMH as a simple and effective means for enhancing the power output characteristics of conventional TMH and LMH.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


Sign in / Sign up

Export Citation Format

Share Document