An Approach Towards Privacy and Security in Pervasive Healthcare System

2021 ◽  
pp. 73-86
Author(s):  
Nazish Siddiqui ◽  
Syed Haider Abbas
2021 ◽  
Vol 13 (11) ◽  
pp. 5889
Author(s):  
Faiza Hashim ◽  
Khaled Shuaib ◽  
Farag Sallabi

Electronic health records (EHRs) are important assets of the healthcare system and should be shared among medical practitioners to improve the accuracy and efficiency of diagnosis. Blockchain technology has been investigated and adopted in healthcare as a solution for EHR sharing while preserving privacy and security. Blockchain can revolutionize the healthcare system by providing a decentralized, distributed, immutable, and secure architecture. However, scalability has always been a bottleneck in blockchain networks due to the consensus mechanism and ledger replication to all network participants. Sharding helps address this issue by artificially partitioning the network into small groups termed shards and processing transactions parallelly while running consensus within each shard with a subset of blockchain nodes. Although this technique helps resolve issues related to scalability, cross-shard communication overhead can degrade network performance. This study proposes a transaction-based sharding technique wherein shards are formed on the basis of a patient’s previously visited health entities. Simulation results show that the proposed technique outperforms standard-based healthcare blockchain techniques in terms of the number of appointments processed, consensus latency, and throughput. The proposed technique eliminates cross-shard communication by forming complete shards based on “the need to participate” nodes per patient.


Author(s):  
Mirjana Maksimović

Nowhere do the technology advancements bring improvements than in the healthcare sector, constantly creating new healthcare applications and systems which completely revolutionize the healthcare domain. The appearance of Internet of Things (IoT) based healthcare systems has immensely improved quality and delivery of care, and significantly reduced the costs. At the same time, these systems generate the enormous amount of health-associated data which has to be properly gathered, analyzed and shared. The smart devices, as the components of IoT-driven healthcare systems, are not able to deal with IoT-produced data, neither data posting to the Cloud is the appropriate solution. To overcome smart devices’ and Cloud’s limitations the new paradigm, known as Fog computing, has appeared, where an additional layer processes the data and sends the results to the Cloud. Despite numerous benefits Fog computing brings into IoT-based environments, the privacy and security issues remain the main challenge for its implementation. The reasons for integrating the IoT-based healthcare system and Fog computing, benefits and challenges, as well as the proposition of simple low-cost system are presented in this paper.


Author(s):  
Sandip Bisui ◽  
Subhas Chandra Misra

This article discusses the issues and concerns related to the adoption of Personalized Medicine in modern healthcare system. In this chapter the authors have elaborated the critical challenges while adopting this new medicare system. The changes required for this adoption have also been discussed by the authors. They have also give a glimpse of the critical success factors and consumer trust concerns along with the privacy and security threats for the successful adoption of Personalized Medicine system.


Author(s):  
Javier Espina ◽  
Heribert Baldus ◽  
Thomas Falck ◽  
Oscar Garcia ◽  
Karin Klabunde

Wireless body sensor networks (BSNs) are an indispensable building stone for any pervasive healthcare system. Although suitable wireless technologies are available and standardization dedicated to BSN communication has been initiated, the authors identify key challenges in the areas of easy-of-use, safety, and security that hinder a quick adoption of BSNs. To address the identified issues they propose using body-coupled communication (BCC) for the automatic formation of BSNs and for user identification. They also present a lightweight mechanism that enables a transparent security setup for BSNs used in pervasive healthcare systems.


Sign in / Sign up

Export Citation Format

Share Document