Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders

Author(s):  
Xin Ma ◽  
Guorong Wu ◽  
Seong Jae Hwang ◽  
Won Hwa Kim
2021 ◽  
Author(s):  
Nuttida Rungratsameetaweemana ◽  
Claudia Lainscsek ◽  
Sydney S Cash ◽  
Javier O Garcia ◽  
Terrence J Sejnowski ◽  
...  

Dynamic functional brain connectivity facilitates adaptive cognition and behavior. Abnormal alterations within such connectivity could result in disrupted functions observed across various neurological conditions. As one of the most common neurological disorders, epilepsy is defined by the seemingly random occurrence of spontaneous seizures. A central but unresolved question concerns the mechanisms by which extraordinarily diverse dynamics of seizures emerge. Here, we apply a graph-theoretical approach to assess dynamic reconfigurations in the functional brain connectivity before, during, and after seizures that display heterogeneous propagation patterns despite sharing similar origins. We demonstrate unique reconfigurations in globally-defined network properties preceding seizure onset that predict propagation patterns of impending seizures, and in locally-defined network properties that differentiate post-onset dynamics. These results characterize quantitative network features underlying the heterogeneity of seizure dynamics and the accompanying clinical manifestations. Decoding these network properties could improve personalized preventative treatment strategies for epilepsy as well as other neurological disorders.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yanan Sui ◽  
Ye Tian ◽  
Wai Kin Daniel Ko ◽  
Zhiyan Wang ◽  
Fumin Jia ◽  
...  

Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.


Author(s):  
Richard L. Klein ◽  
Åsa K. Thureson-Klein ◽  
Harihara M. Mehendale

KeponeR (decachlorooctahydro-1,3,4-metheno-2H-cyclobuta[cd]pentalen-2-one) is an insecticide effective against ants and roaches. It can cause severe toxicity in fishes, birds, rodents and man. Prominent effects include hepatic lipid deposition and hypertrophy, impairment of reproductive capacity and neurological disorders. Mitochondrial oligomycin-sensitive Mg2+-ATPase is also inhibited. The present study is a preliminary investigation of tissue ultrastructural changes accompanying physiological signs of acute toxicity, which after two days treatment include: pronounced hypersensitivity and tremor, various degrees of anorexia and adipsia, and decreased weight gain.Three different series of adult male Sprague-Dawley rats (Charles River or CD-I) were treated by intubation with Kepone in corn oil at a dose of 50 mg per kg for 3 successive days or at 200 ppm in food for 8 days. After ether anesthesia, rats were immediately perfused via a cannula in the left ventricle with 4% p-formaldehyde and 0.5% glutaraldehyde in Millonig's phosphate buffer at pH 7.2 for 20-30 min at 22°C.


2020 ◽  
Vol 31 (2) ◽  
pp. 62-68
Author(s):  
Sara E. Holm ◽  
Alexander Schmidt ◽  
Christoph J. Ploner

Abstract. Some people, although they are perfectly healthy and happy, cannot enjoy music. These individuals have musical anhedonia, a condition which can be congenital or may occur after focal brain damage. To date, only a few cases of acquired musical anhedonia have been reported in the literature with lesions of the temporo-parietal cortex being particularly important. Even less literature exists on congenital musical anhedonia, in which impaired connectivity of temporal brain regions with the Nucleus accumbens is implicated. Nonetheless, there is no precise information on the prevalence, causes or exact localization of both congenital and acquired musical anhedonia. However, the frequent involvement of temporo-parietal brain regions in neurological disorders such as stroke suggest the possibility of a high prevalence of this disorder, which leads to a considerable reduction in the quality of life.


Sign in / Sign up

Export Citation Format

Share Document