Used Paper Fibers for Sustainably Enhancing the MICP Stabilization of Sand

Author(s):  
Meiqi Chen ◽  
Sivakumar Gowthaman ◽  
Kazunori Nakashima ◽  
Shin Komatsu ◽  
Satoru Kawasaki
Keyword(s):  
2007 ◽  
Vol 1047 ◽  
Author(s):  
Jose Luis Ruvalcaba ◽  
Sandra Zetina ◽  
Helena Calvo del Castillo ◽  
Elsa Arroyo ◽  
Eumelia Hernández ◽  
...  

AbstractThe Grolier Codex has been a controversial document ever since its late discovery in 1965. Because of its rare iconographical content and its unknown origin, specialists are not keen to assure its authenticity that would set it amongst the other tree known Maya codes in the world (Dresden, Paris Codex and Madrid Codex).The document that has been kept in the Museo Nacional de Antropología in Mexico City, after its exposure in 1971 at the Grolier Club of New York, has been analyzed by a set of non-destructive techniques in order to characterize its materials including paper fibers, preparation layer and colors composition. The methodology included UV imaging, IR reflectography and optic microscopy examinations as well as Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS) using an external beam setup for elemental analysis. All the measurements were carried out at 3MV Pelletron Accelerator of the Instituto de Física, UNAM. The aim of this work is to verify if the materials in the Grolier Codex match those found for other pre-Hispanic documents.From the elemental composition we concluded that the preparation layer shows the presence of gypsum (CaSO4), color red is due to red hematite (Fe2O3) and black is a carbon-based ink. These results agree with previous analyses carried out by Scanning Electron Microscopy (SEM-EDX) on few samples. However, the presence of Maya Blue in the blue pigment cannot be assured. The examination using UV and IR lights shows homogeneity in the inks and red color but dark areas that contain higher amounts of K in the preparation layer. This paper discusses the results obtained for the UV-IR examinations and the elemental analysis. A comparison with other studies on pre-Hispanic and early colonial codex is presented.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3566
Author(s):  
Bin Du ◽  
Qian Liu ◽  
Yu Shi ◽  
Yushun Zhao

This paper systematically studies the effect of Fe3O4 nanoparticle size on the insulation performance of nanofluid impregnated paper. Three kinds of Fe3O4 nanoparticles with different sizes and their nanofluid impregnated papers were prepared. Environmental scanning electron microscopy (ESEM) and infrared spectroscopy were used to analyze the combination of Fe3O4 nanoparticles and nanofluid impregnated paper. The effect of nanoparticle size on breakdown voltage and several dielectric characteristics, e.g., permittivity, dielectric loss, of the nanofluid impregnated paper were comparatively investigated. Studies show that the Fe3O4 nanoparticles were bound to impregnated paper fibers by O–H bonds, while the relative permittivity and dielectric loss of the nanofluid impregnated papers were increased. Meanwhile, the increase of trap depth, caused by the nanoparticles, can trap the electric charge and improve the breakdown strength. The test results show that the direct current (DC) and alternating current (AC) breakdown voltages of nanofluid impregnated paper increased by 9.1% and 10.0% compared to FR3 nanofluid impregnated paper, respectively.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 842 ◽  
Author(s):  
Weiwei Zhang ◽  
Jin Gu ◽  
Dengyun Tu ◽  
Litao Guan ◽  
Chuanshuang Hu

Paper fibers have gained broad attention in natural fiber reinforced composites in recent years. The specific problem in preparing paper fiber reinforced composites is that paper fibers easily become flocculent after pulverization, which increases difficulties during melt-compounding with polymer matrix and results in non-uniform dispersion of paper fibers in the matrix. In this study, old newspaper (ONP) was treated with a low dosage of gaseous methyltrichlorosilane (MTCS) to solve the flocculation. The modified ONP fibers were characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TG). Then the modified ONP fibers and high-density polyethylene (HDPE) were extruded and pelletized to prepare ONP/HDPE composites via injection molding. Maleic anhydride-grafted polyethylene (MAPE) was added to enhance the interfacial bonding performance with the ultimate purpose of improving the mechanical strength of the composites. The mechanical properties such as tensile, flexural, and impact strength and the water absorption properties of the composite were tested. The results showed that the formation of hydrogen bonding between ONP fibers was effectively prevented after MTCS treatment due to the reduction of exposed –OH groups at the fiber surface. Excessive dosage of MTCS led to severe fiber degradation and dramatically reduced the aspect ratio of ONP fibers. Composites prepared with ONP fibers modified with 4% (v/w) MTCS showed the best mechanical properties due to reduced polarity between the fibers and the matrix, and the relatively long aspect ratio of treated ONP fibers. The composite with or without MAPE showed satisfactory water resistance properties. MTCS was proven to be a cheap and efficient way to pretreat old newspaper for preparing paper fiber reinforced composites.


2009 ◽  
Vol 43 (12) ◽  
pp. 4589-4594 ◽  
Author(s):  
Jessica C. D’eon ◽  
Patrick W. Crozier ◽  
Vasile I. Furdui ◽  
Eric J. Reiner ◽  
E. Laurence Libelo ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Hinda Lachheb ◽  
Ammar Houas ◽  
Jean-Marie Herrmann

Phenol (PH) and three polynitrophenols (4-nitrophenol (PNP), 2,4-dinitrophenol (DNP), 2,4,6-trinitrophenol (TNP)) were photocatalytically degraded by using titania under either artificial or solar light. These four reactions were chosen as test reactions to compare the efficiencies of two suspended commercial titania photocatalysts (Degussa P-25 and Millennium PC-500). It appears that P-25 has a higher initial efficiency in all nitrophenol disappearance reactions. However, for the overall degradation rate, measured by the chemical oxygen demand (COD) disappearance, the performance of PC-500 was similar to that of P25. This was attributed to a favorable textural effect since PC-500 has a much higher surface area which facilitates the readsorption of intermediates. PC-500 was subsequently supported on a special photoinert paper provided by Ahlstrom Company (38-Pont Evèque, France). The influence of the silica binder used for sticking titania particles on the paper fibers was put in evidence as an inhibitor of the coulombic adsorption of anionic species, especially 2,4,6-trinitrophenol, because of the low pzc of silica. Once validated, this supported photocatalyst was introduced in an autonomous solar pilot photoreactor identical to the several prototypes built in the European AQUACAT program. It was demonstrated that the purification of water could be efficiently obtained in a larger scale without any final tedious filtration.


2018 ◽  
Vol 6 ◽  
Author(s):  
Alexander Böhm ◽  
Simon Trosien ◽  
Olga Avrutina ◽  
Harald Kolmar ◽  
Markus Biesalski

Sign in / Sign up

Export Citation Format

Share Document