scholarly journals Changes of Tree and Stand Growth: Review and Implications

2021 ◽  
pp. 189-222
Author(s):  
H. Pretzsch ◽  
M. del Río ◽  
F. Giammarchi ◽  
E. Uhl ◽  
R. Tognetti

AbstractIn this chapter, we review the current long-term growth trends and short-term growth reaction to single or repeated stress events on tree and stand level in Europe. Based on growth trend analyses, the chapter reveals the strong human footprint on forest ecosystems.First, we use long-term experiments and increment cores to show change in growth trends within the last centuries. Growth reactions are caused by deposition and climate change rather than by silvicultural measures. Second, we look closer on regional-specific deviations from the general trend. Climate change, drought events, acid rain and O3 are causing regional-specific growth reaction patterns. Third, we assess stress events and the resilience and resistance of monospecific and mixed stands against biotic and abiotic stress in view of the ongoing growth trends.The revealed tree and stand growth behaviours are highly relevant, as any changes of forest growth and structure have strong impacts on the provision of goods and ecosystem services. The results underline the importance of biomonitoring and suggest counteracting measures by forest planning, adaptation of silvicultural guidelines for existing forest and innovative design of future forests stands.

Author(s):  
Bin Chen

Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97&amp;thinsp;% of global cropland maximum NDVI witnesses an increased trend while 17.03&amp;thinsp;% of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (<i>p</i>&amp;thinsp;&amp;lt;&amp;thinsp;0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.


2020 ◽  
Author(s):  
Matteo Pecchi ◽  
Maurizio Marchi ◽  
Marco Moriondo ◽  
Giovanni Forzieri ◽  
Marco Ammoniaci ◽  
...  

Abstract Background: Forests provide a range of ecosystem services essential for the human wellbeing and their ability is influenced by climate background and further connected to forest management strategies. Italy is a well-known biodiversity hotspot but an uncertainty assessment of the potential impact of climate change is still missing in this country. The aim of this paper is model the potential impact of climate change on 19 tree species occurring across the Italian forests using a species distribution modelling approach, six different Global Circulation Models (GCMs) and one Regional Climate Models (RCMs) for 2050s under an intermediate forcing scenario (RCP 4.5). Results: While no sensible variation in the spatial distribution of the total forested area has been predicted with some tree species gaining space and covering the spatial contractions of others, results showed substantial differences between each species and different climate models. The analyses reported an unchanged amount of total land suitability to forest growth in mountain areas while smaller values were predicted for valleys and floodplains than high-elevation areas. Pure woods were predicted as the most influenced when compared with mixed stands which are characterized by a greater species richness and therefore a supposed higher level of biodiversity and resilience to climate change threatens. Pure softwood stands (e.g. Pinus, Abies) were more sensitive than hardwoods (e.g. Fagus, Quercus), probably due to their artificial origin which established pure stands with tree species generally more prone to admixture with others in (semi)-natural ecosystems.Conclusions: Forest management could play a fundamental role to reduce the potential impact of climate change on forest ecosystems. Silvicultural practices should be aimed at increasing the species richness and favouring hardwoods currently growing as dominating species under conifers canopy, stimulating the natural regeneration, gene flow and supporting (spatial) migration processes.


2020 ◽  
Author(s):  
Xavier Morin ◽  
François de Coligny ◽  
Nicolas Martin-StPaul ◽  
Harald Bugmann ◽  
Maxime Cailleret ◽  
...  

ABSTRACTClimate change impacts forest functioning and dynamics, and large uncertainties remain regarding the interactions between species composition, demographic processes, and environmental drivers. There are few robust tools available to link these processes, which precludes accurate projections and recommendations for long-term forest management. Forest gap-models present a balance between complexity and generality and are widely used in predictive forest ecology. However, their relevance to tackle questions about the links between species composition, climate and forest functioning is unclear. In this regard, demonstrating the ability of gap-models to predict the growth of forest stands at the annual time scale – representing a sensitive and integrated signal of tree functioning and mortality risk - appears as a fundamental step.In this study, we aimed at assessing the ability of a gap-model to accurately predict forest growth in the short-term and potential community composition in the long-term, across a wide range of species and environmental conditions. To do so, we present the gap-model ForCEEPS, calibrated using an original parameterization procedure for the main tree species in France. ForCEEPS was shown to satisfactorily predict forest annual growth (averaged over a few years) at the plot level from mountain to Mediterranean climates, regardless the species. Such an accuracy was not gained at the cost of losing precision for long-term predictions, as the model showed a strong ability to predict potential community composition along a gradient of sites with contrasted conditions. The mechanistic relevance of ForCEEPS parameterization was explored by showing the congruence between the values of key model parameter and species functional traits. We further showed that accounting for the spatial configuration of crowns within forest stands, the effects of climatic constraints and the variability of shade tolerances in the species community are all crucial to better predict short-term productivity with gap-models.The dual ability of predicting short-term functioning and long-term community composition, as well as the balance between generality and realism (i.e., predicting accuracy) of the new generation of gap-models may open great perspectives for the exploration of the biodiversity-ecosystem functioning relationships, species coexistence mechanisms, and the impacts of climate change on forest ecosystems.


2019 ◽  
Vol 139 (3) ◽  
pp. 349-367 ◽  
Author(s):  
H. Pretzsch ◽  
M. Steckel ◽  
M. Heym ◽  
P. Biber ◽  
C. Ammer ◽  
...  

Abstract Past failures of monocultures, caused by wind-throw or insect damages, and ongoing climate change currently strongly stimulate research into mixed-species stands. So far, the focus has mainly been on combinations of species with obvious complementary functional traits. However, for any generalization, a broad overview of the mixing reactions of functionally different tree species in different mixing proportions, patterns and under different site conditions is needed, including assemblages of species with rather similar demands on resources such as light. Here, we studied the growth of Scots pine and oak in mixed versus monospecific stands on 36 triplets located along a productivity gradient across Europe, reaching from Sweden to Spain and from France to Georgia. The set-up represents a wide variation in precipitation (456–1250 mm year−1), mean annual temperature (6.7–11.5 °C) and drought index by de Martonne (21–63 mm °C−1). Stand inventories and increment cores of trees stemming from 40- to 132-year-old, fully stocked stands on 0.04–0.94-ha-sized plots provided insight into how species mixing modifies stand growth and structure compared with neighbouring monospecific stands. On average, the standing stem volume was 436 and 360 m3 ha−1 in the monocultures of Scots pine and oak, respectively, and 418 m3 ha−1 in the mixed stands. The corresponding periodical annual volume increment amounted to 10.5 and 9.1 m3 ha−1 year−1 in the monocultures and 10.5 m3 ha−1 year−1 in the mixed stands. Scots pine showed a 10% larger quadratic mean diameter (p < 0.05), a 7% larger dominant diameter (p < 0.01) and a 9% higher growth of basal area and volume in mixed stands compared with neighbouring monocultures. For Scots pine, the productivity advantages of growing in mixture increased with site index (p < 0.01) and water supply (p < 0.01), while for oak they decreased with site index (p < 0.01). In total, the superior productivity of mixed stands compared to monocultures increased with water supply (p < 0.10). Based on 7843 measured crowns, we found that in mixture both species, but especially oak, had significantly wider crowns (p < 0.001) than in monocultures. On average, we found relatively small effects of species mixing on stand growth and structure. Scots pine benefiting on rich, and oak on poor sites, allows for a mixture that is productive and most likely climate resistant all along a wide ecological gradient. We discuss the potential of this mixture in view of climate change.


Author(s):  
Xue Du ◽  
Xinyun Chen ◽  
Weisheng Zeng ◽  
Jinghui Meng

Abstract Oak-dominated forests, economically and ecologically valuable ecosystems, are widely distributed in China. These oak-dominated forests are now generally degraded coppice forests, and are of relatively low quality. Climate change has been shown to affect forest growth, tree mortality, and recruitment, but available forest growth models are lacking to study climate effects. In this study, a climate-sensitive, transition-matrix growth model (CM) was developed for uneven-aged, mixed-species oak forests using data collected from 253 sample plots from the 8th (2010) and 9th (2015) Chinese National Forest Inventory in Shanxi Province, China. To investigate robustness of the model, we also produced a variable transition model that did not consider climate change (NCM), and fixed parameter transition matrix model (FM), using the same data. Short-term and long-term predictive performance of CM, NCM, and FM were compared. Results indicated that for short-term prediction (5 years), there was almost no significant difference among the three predictive models, though CM exhibited slightly better performance. In contrast, for long-term prediction (100 years), CM, under the three representative concentration pathways (RCPs), i.e. RCP2.6, RCP4.5 and RCP8.5, indicated rather different dynamics that were more reliable because climate factors were considered which could significantly influence forest dynamics, especially in long-term prediction intervals. The CM model provides a framework for the management of mixed-species oak forests in the context of climate change.


2019 ◽  
Vol 95 (03) ◽  
pp. 183-195 ◽  
Author(s):  
Craig Loehle ◽  
Kevin A. Solarik

Reports have identified changes in abiotic factors that potentially affect forest growth. A synthesis of studies of thesechanges in Canada over the past century was undertaken to evaluate how these factors may be influencing forest growth.Reviewed papers used multiple sources of data including long-term inventory plots, tree-ring reconstructions, historicalgeographic data, and forest growth models. The synthesis showed that several positive growth trends were found inBritish Columbia and eastern Canada, while results from the western interior of Canada were mixed. Trembling aspen(Populus tremuloides Michx.) dieback has been noted due to severe and prolonged drought events, with growth reduc-tions and mortality also documented for conifers in the western interior. Studies have also found slow forest expansionin many areas and at the northern tree-line. Overall, authors attributed positive forest growth trends to rising CO2 con-centrations, N deposition, increased precipitation, and increased temperature. Growth declines were generally attributedto a combination of increased temperatures and reduced precipitation. Studies also differed due to time periods consid-ered and how age effects were corrected. Methodological issues were identified that led to contradictory results betweensome studies. These issues need further study.


Les/Wood ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 21-32
Author(s):  
Tomáš Kolář ◽  
Petr Čermák ◽  
Miroslav Trnka ◽  
Eva Koňasová ◽  
Irena Sochová ◽  
...  

European forests are undergoing an important transition due to the current climate change, as monocultures are being gradually replaced by mixed forests. Understanding tree growth in mixed forests under a changing climate is challenging because of tree species’ adaptation and long-term forest planning. In this study, we evaluate the long-term behaviour of Norway spruce (Picea abies), silver fir (Abies alba) and European beech (Fagus sylvatica) from a low montane range at the Czech-Austrian border. Species-specific tree-ring width chronologies have revealed significantly decreasing growth trends since the 2000s. Temporally unstable climate–growth relationships showed an increasing negative effect of current growing season drought on spruce growth and a positive effect of dormant season temperature on fir and beech growth. Our results suggest that though species’ response to climate change differs in the mixed forest, growth reduction in the last years has been proved for all species, likely due to frequent climate extremes.


Sign in / Sign up

Export Citation Format

Share Document