scholarly journals Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe

2019 ◽  
Vol 139 (3) ◽  
pp. 349-367 ◽  
Author(s):  
H. Pretzsch ◽  
M. Steckel ◽  
M. Heym ◽  
P. Biber ◽  
C. Ammer ◽  
...  

Abstract Past failures of monocultures, caused by wind-throw or insect damages, and ongoing climate change currently strongly stimulate research into mixed-species stands. So far, the focus has mainly been on combinations of species with obvious complementary functional traits. However, for any generalization, a broad overview of the mixing reactions of functionally different tree species in different mixing proportions, patterns and under different site conditions is needed, including assemblages of species with rather similar demands on resources such as light. Here, we studied the growth of Scots pine and oak in mixed versus monospecific stands on 36 triplets located along a productivity gradient across Europe, reaching from Sweden to Spain and from France to Georgia. The set-up represents a wide variation in precipitation (456–1250 mm year−1), mean annual temperature (6.7–11.5 °C) and drought index by de Martonne (21–63 mm °C−1). Stand inventories and increment cores of trees stemming from 40- to 132-year-old, fully stocked stands on 0.04–0.94-ha-sized plots provided insight into how species mixing modifies stand growth and structure compared with neighbouring monospecific stands. On average, the standing stem volume was 436 and 360 m3 ha−1 in the monocultures of Scots pine and oak, respectively, and 418 m3 ha−1 in the mixed stands. The corresponding periodical annual volume increment amounted to 10.5 and 9.1 m3 ha−1 year−1 in the monocultures and 10.5 m3 ha−1 year−1 in the mixed stands. Scots pine showed a 10% larger quadratic mean diameter (p < 0.05), a 7% larger dominant diameter (p < 0.01) and a 9% higher growth of basal area and volume in mixed stands compared with neighbouring monocultures. For Scots pine, the productivity advantages of growing in mixture increased with site index (p < 0.01) and water supply (p < 0.01), while for oak they decreased with site index (p < 0.01). In total, the superior productivity of mixed stands compared to monocultures increased with water supply (p < 0.10). Based on 7843 measured crowns, we found that in mixture both species, but especially oak, had significantly wider crowns (p < 0.001) than in monocultures. On average, we found relatively small effects of species mixing on stand growth and structure. Scots pine benefiting on rich, and oak on poor sites, allows for a mixture that is productive and most likely climate resistant all along a wide ecological gradient. We discuss the potential of this mixture in view of climate change.

2021 ◽  
Vol 481 ◽  
pp. 118615
Author(s):  
M. Bouwman ◽  
D.I. Forrester ◽  
J. den Ouden ◽  
G.-J. Nabuurs ◽  
G.M.J. Mohren

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 559 ◽  
Author(s):  
Fernando García-Robredo

The research on mixed-species forestry has rapidly increased in recent decades because there is a growing interest in these types of stands for environmental reasons. Their positive influence on ecosystem biodiversity, stability and resilience, as well as their role in the new challenge brought up by the adaptation to global change, have been the object of many research works. However, the economic implications of mixed-species forest management have not deserved the same attention. The objective of this work is to study the effect of species interactions on productivity, and to economically assess this effect. This research is focused on the analysis of financial return and risk in even aged mixed stands of Pinus sylvestris and Fagus sylvatica in Northern Spain. Growth and yield projections for monospecific and mixed stands of Scots pine and European beech were made by means of a previous model developed from a set of the Spanish National Forest Inventory plots in the region of Navarre. Data from yield tables for both species were used. The effect of species proportion on total stand yield was assessed and transgressive overyielding was found for some mixing ratios. A data series on average stumpage price for both species in Spain over a 29-year period was compiled and the joint probability distribution of price data was used to generate 500 price scenarios. Different management alternatives based on species proportion and rotation age were considered and evaluated in terms of profitability and risk. Some management recommendations can be derived from the results obtained, which point at an optimum mixing ratio from 30% to 40% Scots pine and 70% to 60% European beech.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 495 ◽  
Author(s):  
Lars Drössler ◽  
Eric Agestam ◽  
Kamil Bielak ◽  
Małgorzata Dudzinska ◽  
Julia Koricheva ◽  
...  

Pine-spruce forests are one of the commonest mixed forest types in Europe and both tree species are very important for wood supply. This study summarized nine European studies with Scots pine and Norway spruce where a mixed-species stand and both monocultures were located in an experimental set-up. Overyielding (where growth of a mixed stand was greater than the average of both monocultures) was relatively common and often ranged between 0% and 30%, but could also be negative at individual study sites. Each individual site demonstrated consistent patterns of the mixing effect over different measurement periods. Transgressive overyielding (where the mixed-species stand was more productive than either of the monocultures) was found at three study sites, while a monoculture was more productive on the other sites. Large variation between study sites indicated that the existing experiments do not fully represent the extensive region where this mixed pine-spruce forest can occur. Pooled increment data displayed a negative influence of latitude and stand age on the mixing effect of those tree species in forests younger than 70 years.


2021 ◽  
pp. 189-222
Author(s):  
H. Pretzsch ◽  
M. del Río ◽  
F. Giammarchi ◽  
E. Uhl ◽  
R. Tognetti

AbstractIn this chapter, we review the current long-term growth trends and short-term growth reaction to single or repeated stress events on tree and stand level in Europe. Based on growth trend analyses, the chapter reveals the strong human footprint on forest ecosystems.First, we use long-term experiments and increment cores to show change in growth trends within the last centuries. Growth reactions are caused by deposition and climate change rather than by silvicultural measures. Second, we look closer on regional-specific deviations from the general trend. Climate change, drought events, acid rain and O3 are causing regional-specific growth reaction patterns. Third, we assess stress events and the resilience and resistance of monospecific and mixed stands against biotic and abiotic stress in view of the ongoing growth trends.The revealed tree and stand growth behaviours are highly relevant, as any changes of forest growth and structure have strong impacts on the provision of goods and ecosystem services. The results underline the importance of biomonitoring and suggest counteracting measures by forest planning, adaptation of silvicultural guidelines for existing forest and innovative design of future forests stands.


Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.


2011 ◽  
Vol 41 (8) ◽  
pp. 1710-1721 ◽  
Author(s):  
Aaron R. Weiskittel ◽  
Nicholas L. Crookston ◽  
Philip J. Radtke

Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates obtained from 3-PG and NASA’s MODIS satellite. Models were constructed that predict SI and both measures of GPP from climate variables. Results indicated that a nonparametric model with two climate-related predictor variables explained over 68% and 76% of the variation in SI and GPP, respectively. The relationship between GPP and SI was limited (R2 of 36%–56%), while the relationship between GPP and climate (R2 of 76%–91%) was stronger than the one between SI and climate (R2 of 68%–78%). The developed SI model was used to predict SI under varying expected climate change scenarios. The predominant trend was an increase of 0–5 m in SI, with some sites experiencing reductions of up to 10 m. The developed model can predict SI across a broad geographic scale and into the future, which statistical growth models can use to represent the expected effects of climate change more effectively.


2016 ◽  
Vol 52 (2) ◽  
pp. 622-643 ◽  
Author(s):  
Edoardo Borgomeo ◽  
Mohammad Mortazavi-Naeini ◽  
Jim W. Hall ◽  
Michael J. O'Sullivan ◽  
Tim Watson

Sign in / Sign up

Export Citation Format

Share Document