Rice Leaf Disease Classification Using Deep Learning and Target for Mobile Devices

Author(s):  
Nguyen Tien Su ◽  
Phan Duy Hung ◽  
Bui Trong Vinh ◽  
Vu Thu Diep
Author(s):  
Kotharu Uma Venkata Ravi Teja ◽  
Bhumula Pavan Venkat Reddy ◽  
Likhitha Reddy Kesara ◽  
Kotaru Drona Phani Kowshik ◽  
Lakshmi Anchitha Panchaparvala

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Kaizhou Li ◽  
Jianhui Lin ◽  
Jinrong Liu ◽  
Yandong Zhao

Diseases from Ginkgo biloba have brought great losses to medicine and the economy. Therefore, if the degree of disease can be automatically identified in Ginkgo biloba leaves, people will take appropriate measures to avoid losses in advance. Deep learning has made great achievements in plant disease identification and classification. For this paper, the convolution neural network model was used to classify the different degrees of ginkgo leaf disease. This study used the VGGNet-16 and Inception V3 models. After preprocessing and training 1322 original images under laboratory conditions and 2408 original images under field conditions, 98.44% accuracy was achieved under laboratory conditions and 92.19% under field conditions with the VGG model. The Inception V3 model achieved 92.3% accuracy under laboratory conditions and 93.2% under field conditions. Thus, the Inception V3 model structure was more suitable for field conditions. To our knowledge, there is very little research on the classification of different degrees of the same plant disease. The success of this study will have a significant impact on the prediction and early prevention of ginkgo leaf blight.


2021 ◽  
Vol 61 ◽  
pp. 101182
Author(s):  
Ümit Atila ◽  
Murat Uçar ◽  
Kemal Akyol ◽  
Emine Uçar

Author(s):  
Rizqi Amaliatus Sholihati ◽  
Indra Adji Sulistijono ◽  
Anhar Risnumawan ◽  
Eny Kusumawati

2021 ◽  
Vol 38 (3) ◽  
pp. 699-709
Author(s):  
Shivali Amit Wagle ◽  
Harikrishnan R

Deep learning models are playing a vital role in classification goals that can have propitious results. In the past few years, many models are being used for this purpose of plant disease classification. This work has assisted in the process of identification and classification of a plant leaf disease. In this paper, the Tomato plant leaf images are taken from the PlantVillage Database consisting of one healthy and eight disease classes. The disease classes are selected based on the occurrence of the disease in India. The deep learning models of AlexNet, VGG16, GoogLeNet, MobileNetv2, and SqueezeNet are used in this work for the classification of Tomato plant leaf as healthy or diseased and further which disease class it belongs to. The models used here are all the pre-trained models, so transfer learning is used to fit the total number of classes that need to be classified by the network model. VGG16 model outperformed giving 99.17% accuracy compared to AlexNet, GoogLeNet, MobileNetv2, and SqueezeNet. The work concludes with the model’s validation results on the set of images captured at Krishi Vigyan Kendra Narayangaon (KVKN), India.


2021 ◽  
Vol 7 ◽  
pp. e432
Author(s):  
Bifta Sama Bari ◽  
Md Nahidul Islam ◽  
Mamunur Rashid ◽  
Md Jahid Hasan ◽  
Mohd Azraai Mohd Razman ◽  
...  

The rice leaves related diseases often pose threats to the sustainable production of rice affecting many farmers around the world. Early diagnosis and appropriate remedy of the rice leaf infection is crucial in facilitating healthy growth of the rice plants to ensure adequate supply and food security to the rapidly increasing population. Therefore, machine-driven disease diagnosis systems could mitigate the limitations of the conventional methods for leaf disease diagnosis techniques that is often time-consuming, inaccurate, and expensive. Nowadays, computer-assisted rice leaf disease diagnosis systems are becoming very popular. However, several limitations ranging from strong image backgrounds, vague symptoms’ edge, dissimilarity in the image capturing weather, lack of real field rice leaf image data, variation in symptoms from the same infection, multiple infections producing similar symptoms, and lack of efficient real-time system mar the efficacy of the system and its usage. To mitigate the aforesaid problems, a faster region-based convolutional neural network (Faster R-CNN) was employed for the real-time detection of rice leaf diseases in the present research. The Faster R-CNN algorithm introduces advanced RPN architecture that addresses the object location very precisely to generate candidate regions. The robustness of the Faster R-CNN model is enhanced by training the model with publicly available online and own real-field rice leaf datasets. The proposed deep-learning-based approach was observed to be effective in the automatic diagnosis of three discriminative rice leaf diseases including rice blast, brown spot, and hispa with an accuracy of 98.09%, 98.85%, and 99.17% respectively. Moreover, the model was able to identify a healthy rice leaf with an accuracy of 99.25%. The results obtained herein demonstrated that the Faster R-CNN model offers a high-performing rice leaf infection identification system that could diagnose the most common rice diseases more precisely in real-time.


Sign in / Sign up

Export Citation Format

Share Document