Global Symmetry Local Asymmetry: In the Realized Buildings by the Innovation Studio ONL BV

2021 ◽  
pp. 219-230
Author(s):  
Kas Oosterhuis
Keyword(s):  
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Nikolay Bobev ◽  
Thomas Fischbacher ◽  
Fridrik Freyr Gautason ◽  
Krzysztof Pilch

Abstract We identify 219 AdS4 solutions in four-dimensional dyonically gauged ISO(7) $$ \mathcal{N} $$ N = 8 supergravity and present some of their properties. One of the new solutions preserves $$ \mathcal{N} $$ N = 1 supersymmetry and provides a rare explicit example of an AdS4 vacuum dual to a 3d SCFT with no continuous global symmetry. There are also two new non-supersymmetric solutions for which all 70 scalar fields in the supergravity theory have masses above the BF bound. All of these AdS4 solutions can be uplifted to massive type IIA supergravity. Motivated by this we present the low lying operator spectra of the dual 3d CFTs for all known supersymmetric AdS4 solutions in the theory and organize them into superconformal multiplets.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucien Heurtier ◽  
Hao-Lin Li ◽  
Huayang Song ◽  
Shufang Su ◽  
Wei Su ◽  
...  

AbstractThe Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N −1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform aχ2fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Tony Gherghetta ◽  
Minh D. Nguyen

Abstract We consider the strong dynamics associated with a composite Higgs model that simultaneously produces dynamical axions and solves the strong CP problem. The strong dynamics arises from a new Sp or SU(4) hypercolor gauge group containing QCD colored hyperfermions that confines at a high scale. The hypercolor global symmetry is weakly gauged by the Standard Model electroweak gauge group and an enlarged color group, SU(N + 3) × SU(N)′. When hyperfermion condensates form, they not only lead to an SU(5)/SO(5) composite Higgs model but also spontaneously break the enlarged color group to SU(3)c× SU(N)D. At lower energies, the SU(N)D group confines, producing two dynamical axions that eliminates all CP violation. Furthermore, small instantons from the SU(N)′ group can enhance the axion mass, giving rise to TeV scale axion masses that can be detected at collider experiments. Our model provides a way to unify the composite Higgs with dynamical axions, without introducing new elementary scalar fields, while also extending the range of axion masses that addresses the strong CP problem.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Philippe Mathieu ◽  
Nicholas Teh

Abstract Recent years have seen a renewed interest in using ‘edge modes’ to extend the pre-symplectic structure of gauge theory on manifolds with boundaries. Here we further the investigation undertaken in [1] by using the formalism of homotopy pullback and Deligne- Beilinson cohomology to describe an electromagnetic (EM) duality on the boundary of M = B3 × ℝ. Upon breaking a generalized global symmetry, the duality is implemented by a BF-like topological boundary term. We then introduce Wilson line singularities on ∂M and show that these induce the existence of dual edge modes, which we identify as connections over a (−1)-gerbe. We derive the pre-symplectic structure that yields the central charge in [1] and show that the central charge is related to a non-trivial class of the (−1)-gerbe.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Timothy Trott

Abstract Sum rules in effective field theories, predicated upon causality, place restrictions on scattering amplitudes mediated by effective contact interactions. Through unitarity of the S-matrix, these imply that the size of higher dimensional corrections to transition amplitudes between different states is bounded by the strength of their contributions to elastic forward scattering processes. This places fundamental limits on the extent to which hypothetical symmetries can be broken by effective interactions. All analysis is for dimension 8 operators in the forward limit. Included is a thorough derivation of all positivity bounds for a chiral fermion in SU(2) and SU(3) global symmetry representations resembling those of the Standard Model, general bounds on flavour violation, new bounds for interactions between particles of different spin, inclusion of loops of dimension 6 operators and illustration of the resulting strengthening of positivity bounds over tree-level expectations, a catalogue of supersymmetric effective interactions up to mass dimension 8 and 4 legs and the demonstration that supersymmetry unifies the positivity theorems as well as the new bounds.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Benini ◽  
Sergio Benvenuti

Abstract We consider three-dimensional sQED with 2 flavors and minimal supersymmetry. We discuss various models which are dual to Gross-Neveu-Yukawa theories. The U(2) ultraviolet global symmetry is often enhanced in the infrared, for instance to O(4) or SU(3). This is analogous to the conjectured behaviour of non-supersymmetric QED with 2 flavors. A perturbative analysis of the Gross-Neveu-Yukawa models in the D = 4 − ε expansion shows that the U(2) preserving superpotential deformations of the sQED (mod- ulo tuning mass terms to zero) are irrelevant, therefore the fixed points with enhanced symmetry are stable. We also construct an example of $$ \mathcal{N} $$ N = 2 sQED with 4 flavors that exhibits enhanced SO(6) symmetry.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nikolay Bobev ◽  
Friðrik Freyr Gautason ◽  
Jesse van Muiden

Abstract We employ a non-compact gauging of four-dimensional maximal supergravity to construct a two-parameter family of AdS4 J-fold solutions preserving $$ \mathcal{N} $$ N = 2 supersymmetry. All solutions preserve $$ \mathfrak{u} $$ u (1) × $$ \mathfrak{u} $$ u (1) global symmetry and in special limits we recover the previously known $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{u} $$ u (1) invariant $$ \mathcal{N} $$ N = 2 and $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{su} $$ su (2) invariant $$ \mathcal{N} $$ N = 4 J-fold solutions. This family of AdS4 backgrounds can be uplifted to type IIB string theory and is holographically dual to the conformal manifold of a class of three-dimensional S-fold SCFTs obtained from the $$ \mathcal{N} $$ N = 4 T [U(N)] theory of Gaiotto-Witten. We find the spectrum of supergravity excitations of the AdS4 solutions and use it to study how the operator spectrum of the three-dimensional SCFT depends on the exactly marginal couplings.


2010 ◽  
Vol 44 (3) ◽  
pp. 035402 ◽  
Author(s):  
Riccardo Rattazzi ◽  
Slava Rychkov ◽  
Alessandro Vichi

1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Sign in / Sign up

Export Citation Format

Share Document