Study of Surface Water Drainage: Laboratory Test

Author(s):  
Ali Aryo Bawono
2017 ◽  
Vol 45 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Lawrence V. Stanislawski ◽  
Kornelijus Survila ◽  
Jeffrey Wendel ◽  
Yan Liu ◽  
Barbara P. Buttenfield

1964 ◽  
Vol 27 (3) ◽  
pp. 588-612
Author(s):  
H J B HARDING ◽  
P ACKERS ◽  
L B ESCRITT ◽  
A J M HARRISON ◽  
D J HOLLAND ◽  
...  
Keyword(s):  

WARTA ARDHIA ◽  
2013 ◽  
Vol 39 (4) ◽  
pp. 305-316
Author(s):  
Ataline Muliasari ◽  
Lupi Wahyuningsih

Drainage is defined as surface water drainage, either by gravity or by pump which aims to prevent inundation, maintain and lower the water level im order to avoid the amount of water. Ahmad Yani Airport has a poor drainage systems. Furthermore, land subsidence in Semarang area potential for experiencing flooding when the rainy season with a fairly high rainfall. Based on the results of processing the data showed that it is needed the land surface drainage channel with a cross-sectional shape of a trapezium. When the width of the base of the cross section is 3 meters , then the required channel depth is 3.9 meters with a hydraulic radius is 0.82-meter, and hydraulic depth is 3.05 meters. Drainase didefinisikan sebagai pembuangan air permukaan, baik secara gravitasi maupun dengan pompa yang bertujuan untuk mencegah terjadinya genangan, menjaga dan menurunkan permukaan air sehingga genangan air dapat dihindarkan. Bandar Udara Ahmad Yani dengan kondisi sistem drainase yang kurang baik dan penurunan permukaan tanah di wilayah Semarang, maka bila musim penghujan tiba dengan curah hujan yang cukup tinggi selalu berpotensi untuk mengalami banjir. Berdasarkan hasil pengolahan data juga didapatkan hasil bahwa untuk menyesuaikan antara curah hujan di wilayah Semarang dengan luas area Bandar udara Achmad Yani diperlukan saluran drainase muka tanah berupa saluran dengan bentuk penampang trapezium. Bila lebar dasar dari penampang trapezim tersebut adalah 3 meter, maka diperlukan saluran sedalam 3,9 meter dengan Jari-jari hydraulic 0,82 meter, dan kedalaman hydraulic 3,05 meter.


2017 ◽  
Vol 23 (4) ◽  
pp. 275-289
Author(s):  
Benjamin D. Haugen

Abstract Infiltration of surface water increases pore water pressures in slopes and reduces their stability. Common landslide features such as tension cracks and sag ponds can act as preferential pathways for surface drainage and may increase infiltration and exacerbate pore pressure–induced instability. Surface water drainage control is likewise recommended by numerous authors as an effective and inexpensive landslide mitigation method and has been shown to reduce the risk of landslides. While robust design procedures for other geotechnical applications exist (e.g., slope reduction, subsurface drains), similar procedures for landslide surface water drainage control have remained largely ad hoc and vary among practitioners. The objective of this article is to summarize technical literature related to surface water drainage control and provide a coherent design procedure for landslides.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Bin Lu ◽  
Guangcheng Shao ◽  
Shuang’en Yu ◽  
Shiqiang Wu ◽  
Xinghua Xie

To relieve the situation of the agricultural nonpoint pollution (NPS) in south and east China, paddy field controlled drainage (PFCD) is applied as an important and efficient approach to agricultural water management. A series of PFCD tests at four major growth stages of rice were conducted by use of 18 lysimeters. Concentration of ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) in surface and subsurface paddy water was observed. The results indicated that the concentration ofNH4+-N andNO3--N in paddy water declined with the persistence of a waterlogged condition. Compared to traditional drainage, PFCD reduced N loss in surface water by 95.6%, 78.7%, 59.6%, and 87.4% at the stage of tillering, jointing-booting, heading-flowering, and milking, respectively. It should be noted that loads of N losses in surface water increased on the fourth day after waterlogging at the jointing-booting and milking stage, and surface water exhibited higher N concentration on the first day after waterlogging at each stage. Therefore, paddy field surface water drainage should be avoided in these periods.


Sign in / Sign up

Export Citation Format

Share Document