Intermediate Sensitivity of Neural Activities Induces the Optimal Learning Speed in a Multiple-Timescale Neural Activity Model

2021 ◽  
pp. 64-72
Author(s):  
Tomoki Kurikawa
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Matthew W Flounders ◽  
Carlos González-García ◽  
Richard Hardstone ◽  
Biyu J He

Past experiences have enormous power in shaping our daily perception. Currently, dynamical neural mechanisms underlying this process remain mysterious. Exploiting a dramatic visual phenomenon, where a single experience of viewing a clear image allows instant recognition of a related degraded image, we investigated this question using MEG and 7 Tesla fMRI in humans. We observed that following the acquisition of perceptual priors, different degraded images are represented much more distinctly in neural dynamics starting from ~500 ms after stimulus onset. Content-specific neural activity related to stimulus-feature processing dominated within 300 ms after stimulus onset, while content-specific neural activity related to recognition processing dominated from 500 ms onward. Model-driven MEG-fMRI data fusion revealed the spatiotemporal evolution of neural activities involved in stimulus, attentional, and recognition processing. Together, these findings shed light on how experience shapes perceptual processing across space and time in the brain.


Author(s):  
Xingran Wang ◽  
Jiaqing Yan ◽  
Huiran Zhang ◽  
Yi Yuan

Abstract Objective. Previous studies have demonstrated that ultrasound thalamic stimulation (UTS) can treat disorders of consciousness. However, it is still unclear how UTS modulates neural activity in the thalamus and cortex. Approach. In this study, we performed UTS in mice and recorded the neural activities including spike and local field potential (LFP) of the thalamus and motor cortex. We analyzed the firing rate of spikes and the power spectrum of LFPs and evaluated the coupling relationship between LFPs from the thalamus and motor cortex with Granger causality. Main results. Our results clearly indicate that UTS can directly induce neural activity in the thalamus and indirectly induce neural activity in the motor cortex. We also found that there is a strong connection relationship of neural activity between thalamus and motor cortex under UTS. Significance. These results demonstrate that UTS can modulate the neural activity of the thalamus and motor cortex in mice. It has the potential to provide guidance for the ultrasound treatment of thalamus-related diseases.


Author(s):  
Weiping Yang ◽  
Yulin Gao ◽  
Jinglong Wu

In everyday life, visual and auditory are the most common forms of sensory information. Therefore, audiovisual interaction in the brain plays an important role in performance and perception. In addition, our attention system allows us to dynamically select and enhance the processing of objects and events that are the most relevant at each moment. Some studies suggest that attention can modulate audiovisual integration. However, different neural activity of multimodal audiovisual integration can be seen in different attention conditions. This review focuses on the question of what affects selective and divided attention in audiovisual interaction. Neural activities of audiovisual under selective and divided attention conditions are also discussed. This review aims to bring together and summarize previous studies on the interactions between attention and audiovisual integration.


2009 ◽  
Vol 101 (6) ◽  
pp. 3258-3269 ◽  
Author(s):  
A. Mouraux ◽  
G. D. Iannetti

Brief radiant laser pulses can be used to activate cutaneous Aδ and C nociceptors selectively and elicit a number of transient brain responses [laser-evoked potentials (LEPs)] in the ongoing EEG. LEPs have been used extensively in the past 30 years to gain knowledge about the cortical mechanisms underlying nociception and pain in humans, by assuming that they reflect at least neural activities uniquely or preferentially involved in processing nociceptive input. Here, by applying a novel blind source separation algorithm (probabilistic independent component analysis) to 124-channel event-related potentials elicited by a random sequence of nociceptive and non-nociceptive somatosensory, auditory, and visual stimuli, we provide compelling evidence that this assumption is incorrect: LEPs do not reflect nociceptive-specific neural activity. Indeed, our results indicate that LEPs can be entirely explained by a combination of multimodal neural activities (i.e., activities also elicited by stimuli of other sensory modalities) and somatosensory-specific, but not nociceptive-specific, neural activities (i.e., activities elicited by both nociceptive and non-nociceptive somatosensory stimuli). Regardless of the sensory modality of the eliciting stimulus, the magnitude of multimodal activities correlated with the subjective rating of saliency, suggesting that these multimodal activities are involved in stimulus-triggered mechanisms of arousal or attentional reorientation.


2018 ◽  
Author(s):  
Leila Ghanbari ◽  
Russell E. Carter ◽  
Matthew L. Rynes ◽  
Judith Dominguez ◽  
Gang Chen ◽  
...  

ABSTRACTNeural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating cognition, perception and sensorimotor behaviors. Enormous progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. To fill this need, we have engineered “See-Shells” – digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>200 days) optical access to 45 mm2 of the dorsal cerebral cortex in the mouse. We demonstrate the ability to perform mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm through the See-Shells. See-Shells implanted on transgenic mice expressing genetically encoded calcium (Ca2+) indicators allow tracking of neural activities from multiple, non-contiguous regions spread across millimeters of the cortex. Further, neural probes can access the brain through perforated See-Shells, either for perturbing or recording neural activity from localized brain regions simultaneously with whole cortex imaging. As See-Shells can be constructed using readily available desktop fabrication tools and modified to fit a range of skull geometries, they provide a powerful tool for investigating brain structure and function.


1994 ◽  
Vol 02 (03) ◽  
pp. 401-411 ◽  
Author(s):  
L. RODET ◽  
G. TIBERGHIEN

When we analyze a particular stimulus, a number of neurons in the brain are specifically activated. The recognition of a visual pattern can be interpreted as the activation of a particular group of such neurons, in a particular way. Some recent results [5] have shown that a group of neurons may respond to a stimulus with a coupled activity. This notion of coupled neural activity can be used to understand the multiple levels of parallelism in the brain. It is known that, in response to a single stimulus, many mental representations are activated in parallel [1]. Our objective is to examine how coupled activity of groups of neurons can explain this parallelism of concept activation in the brain. The neural activity of a single neuron or groups of neurons is simulated. Simple neural networks combining groups of neurons could also be used to simulate the synchronization of neural activities.


2018 ◽  
Vol 4 (1) ◽  
pp. 1-15
Author(s):  
Fang Luo ◽  
Yin Wei ◽  
Ziyue Wang ◽  
Minmin Luo ◽  
Ji Hu

Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineering. Here we review the design and application of genetically encoded indicators for calcium ions, membrane potential and neurotransmitters. We also summarize common strategies for the design and optimization of genetically encoded neural activity indicators.


1989 ◽  
Vol 67 (4) ◽  
pp. 1518-1524 ◽  
Author(s):  
J. C. Hwang ◽  
D. Zhou ◽  
W. M. St John

Our purpose was to characterize activity of the intercostal nerve branch innervating the triangularis sterni muscle and the motoneuronal activities comprising this nerve discharge. In decerebrate, vagotomized, paralyzed, and ventilated cats, phasic triangularis sterni neural activity was evident in normocapnia. In most cats, activity did not commence until midexpiration. Activity then rose progressively to terminate at end expiration. Peak neural activities increased in parallel with phrenic activity in hypercapnia and fell in hypocapnia. The progressive increase in triangularis sterni neural activity within each respiratory cycle resulted from recruitment of motoneuronal activities throughout expiration. Once recruited, many motoneurons had a decrementing or constant discharge frequency. In hypercapnia, motoneuronal discharge frequencies increased, and additional activities were recruited. The number of active motoneurons and their discharge frequencies fell in hypocapnia. A similar pattern of motoneuronal activities and responses to stimuli was observed in cats with intact vagi. Factors are considered that may underlie the recruitment pattern of triangularis sterni motoneuronal activities and the inhibition of these in early expiration.


2017 ◽  
Vol 115 (3) ◽  
pp. 595-600 ◽  
Author(s):  
Zhaohua Ding ◽  
Yali Huang ◽  
Stephen K. Bailey ◽  
Yurui Gao ◽  
Laurie E. Cutting ◽  
...  

Functional MRI based on blood oxygenation level-dependent (BOLD) contrast is well established as a neuroimaging technique for detecting neural activity in the cortex of the human brain. While detection and characterization of BOLD signals, as well as their electrophysiological and hemodynamic/metabolic origins, have been extensively studied in gray matter (GM), the detection and interpretation of BOLD signals in white matter (WM) remain controversial. We have previously observed that BOLD signals in a resting state reveal structure-specific anisotropic temporal correlations in WM and that external stimuli alter these correlations and permit visualization of task-specific fiber pathways, suggesting variations in WM BOLD signals are related to neural activity. In this study, we provide further strong evidence that BOLD signals in WM reflect neural activities both in a resting state and under functional loading. We demonstrate that BOLD signal waveforms in stimulus-relevant WM pathways are synchronous with the applied stimuli but with various degrees of time delay and that signals in WM pathways exhibit clear task specificity. Furthermore, resting-state signal fluctuations in WM tracts show significant correlations with specific parcellated GM volumes. These observations support the notion that neural activities are encoded in WM circuits similarly to cortical responses.


Sign in / Sign up

Export Citation Format

Share Document