scholarly journals Combining Software and Hardware LCS for Lightweight On-chip Learning

Author(s):  
Andreas Bernauer ◽  
Johannes Zeppenfeld ◽  
Oliver Bringmann ◽  
Andreas Herkersdorf ◽  
Wolfgang Rosenstiel
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Akbar Zarezadeh ◽  
Christophe Bobda

Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC) design. In conjunction with this vision application, a hardware object request broker (ORB) middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.


2021 ◽  
Vol 26 (4) ◽  
pp. 1-28
Author(s):  
Hasini Witharana ◽  
Yangdi Lyu ◽  
Prabhat Mishra

Assertions are widely used for functional validation as well as coverage analysis for both software and hardware designs. Assertions enable runtime error detection as well as faster localization of errors. While there is a vast literature on both software and hardware assertions for monitoring functional scenarios, there is limited effort in utilizing assertions to monitor System-on-Chip (SoC) security vulnerabilities. We have identified common SoC security vulnerabilities and defined several classes of assertions to enable runtime checking of security vulnerabilities. A major challenge in assertion-based validation is how to activate the security assertions to ensure that they are valid. While existing test generation using model checking is promising, it cannot generate directed tests for large designs due to state space explosion. We propose an automated and scalable mechanism to generate directed tests using a combination of symbolic execution and concrete simulation of RTL models. Experimental results on diverse benchmarks demonstrate that the directed tests are able to activate security assertions non-vacuously.


Author(s):  
Andreas Bernauer ◽  
Johannes Zeppenfeld ◽  
Oliver Bringmann ◽  
Andreas Herkersdorf ◽  
Wolfgang Rosenstiel

Author(s):  
Vidya D.S. ◽  
Manjunath Ramachandra

<span lang="EN-US">Today, the semiconductor industries are rapidly usinganalog and mixed signals to achieve cost-effective solutions on a System on Chip (SoC) design.  The SoC device is a part of analog, digital and essential mixed-signal models/circuits merged on a semiconductor device, which provides the platform to build modern retail/consumer electronics appliances with smart technology. In order to evaluate the mixed signals, the conventional approaches are not effective with respect to its performance, time and manufacturing cost. Thus, the recent researches were much interested in formal verification technique as it provides the evidence of conscious algorithms in a system. The demand for formal verification in the SoC designs in the context of software and hardware platform is high because of its cost and accuracy. Thus, the paper introduces atechnique of formal verification for mixed signals by using training models of the Differential fed neural network (DFNN) over feedforward neural network (FFNN). The formal verification is performed through equivalence checking by using recently adopted designs as reference designs. The outcomes of the verification techniques suggests that DFNN based technique improves the training accuracy and optimizes the hardware resources like area, power than the FFNN based technique.</span>


Author(s):  
J. M. Paque ◽  
R. Browning ◽  
P. L. King ◽  
P. Pianetta

Geological samples typically contain many minerals (phases) with multiple element compositions. A complete analytical description should give the number of phases present, the volume occupied by each phase in the bulk sample, the average and range of composition of each phase, and the bulk composition of the sample. A practical approach to providing such a complete description is from quantitative analysis of multi-elemental x-ray images.With the advances in recent years in the speed and storage capabilities of laboratory computers, large quantities of data can be efficiently manipulated. Commercial software and hardware presently available allow simultaneous collection of multiple x-ray images from a sample (up to 16 for the Kevex Delta system). Thus, high resolution x-ray images of the majority of the detectable elements in a sample can be collected. The use of statistical techniques, including principal component analysis (PCA), can provide insight into mineral phase composition and the distribution of minerals within a sample.


Author(s):  
Nestor J. Zaluzec

The Information SuperHighway, Email, The Internet, FTP, BBS, Modems, : all buzz words which are becoming more and more routine in our daily life. Confusing terminology? Hopefully it won't be in a few minutes, all you need is to have a handle on a few basic concepts and terms and you will be on-line with the rest of the "telecommunication experts". These terms all refer to some type or aspect of tools associated with a range of computer-based communication software and hardware. They are in fact far less complex than the instruments we use on a day to day basis as microscopist's and microanalyst's. The key is for each of us to know what each is and how to make use of the wealth of information which they can make available to us for the asking. Basically all of these items relate to mechanisms and protocols by which we as scientists can easily exchange information rapidly and efficiently to colleagues in the office down the hall, or half-way around the world using computers and various communications media. The purpose of this tutorial/paper is to outline and demonstrate the basic ideas of some of the major information systems available to all of us today. For the sake of simplicity we will break this presentation down into two distinct (but as we shall see later connected) areas: telecommunications over conventional phone lines, and telecommunications by computer networks. Live tutorial/demonstrations of both procedures will be presented in the Computer Workshop/Software Exchange during the course of the meeting.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document