A Necessary and Sufficient Condition for Quadratic Finite Time Feedback Controllability

Author(s):  
I. R. Petersen ◽  
M. Corless ◽  
E. P. Ryan
Author(s):  
Robert Laister ◽  
Mikołaj Sierżęga

Abstract We derive a blow-up dichotomy for positive solutions of fractional semilinear heat equations on the whole space. That is, within a certain class of convex source terms, we establish a necessary and sufficient condition on the source for all positive solutions to become unbounded in finite time. Moreover, we show that this condition is equivalent to blow-up of all positive solutions of a closely-related scalar ordinary differential equation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Songlin Wo ◽  
Xiaoxin Han

The finite-time stability (FTS) problem of discrete-time linear singular systems (DTLSS) is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI) approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.


2022 ◽  
Vol 12 (2) ◽  
pp. 883
Author(s):  
Yuxin Cui ◽  
Shu Li ◽  
Yunxiao Shan ◽  
Fengqiu Liu

This study focuses on the finite-time set reachability of probabilistic Boolean multiplex control networks (PBMCNs). Firstly, based on the state transfer graph (STG) reconstruction technique, the PBMCNs are extended to random logic dynamical systems. Then, a necessary and sufficient condition for the finite-time set reachability of PBMCNs is obtained. Finally, the obtained results are effectively illustrated by an example.


2003 ◽  
Vol 3 (3) ◽  
Author(s):  
Fernando Quirós ◽  
Julio D. Rossi

AbstractWe prove the existence of a nontrivially coupled parabolic system such that one of its components becomes unbounded at a finite time while the other remains bounded, a situation that we denote as non-simultaneous blow-up. Our system consists of two porous medium equations with coupled nonlinear flux boundary conditions. As a preliminary step, we will obtain a necessary and sufficient condition for blow-up. Next we characterize completely, in the case of increasing in time solutions, the set of parameters appearing in the system for which nonsimultaneous blow-up indeed occurs. In the course of our proofs we will obtain a necessary and sufficient condition for the blow-up of solutions to general porous medium type equations on the half-line with a prescribed flux at the boundary blowing up at a finite time, a result of independent interest.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document