Redox Control of Gene Expression by Eukaryotic Transcription Factors NF-κB, AP-1 and SRF/TCF

Author(s):  
M. Meyer ◽  
R. Schreck ◽  
J. M. Müller ◽  
P. A. Baeuerle
Author(s):  
Steven E. Hyman ◽  
Eric J. Nestler

This chapter provides an overview of the fundamental molecular processes by which information is encoded in the genome and how this information is expressed within an environmental context. We describe what genes are, how they function, and how their expression into RNA and protein is regulated by signals from outside the cell. Particular attention is given to a series of stimulus-regulated transcription factors, which play important roles in transducing information from the cell surface to the nucleus. Work in this area has shown that the control of gene expression by extracellular signals is a critical arena for gene–environment interactions that are highly relevant to psychiatry.


2012 ◽  
Vol 53 ◽  
pp. 83-93 ◽  
Author(s):  
Domenica Spadaro ◽  
Rocio Tapia ◽  
Pamela Pulimeno ◽  
Sandra Citi

The AJC (apical junctional complex) of vertebrate epithelial cells orchestrates cell–cell adhesion and tissue barrier function. In addition, it plays a pivotal role in signalling. Several protein components of the AJC, e.g. the cytoplasmic proteins β-catenin, p120-catenin and ZO (Zonula Occludens)-2, can shuttle to the nucleus, where they interact with transcription factors to regulate gene expression and cell proliferation. Other junctional proteins, e.g. angiomotin, α-catenin and cingulin, are believed to act by sequestering either transcription factors, such as YAP (Yes-associated protein), or regulators of small GTPases, such as GEF (guanine-nucleotide-exchange factor)-H1, at junctions. The signalling activities of AJC proteins are triggered by different extracellular and intracellular cues, including cell density, and physiological or pathological activation of developmentally regulated pathways, such as the Wnt pathway. The interplay between junctional protein complexes, the actin cytoskeleton and signalling pathways is of crucial importance in the regulation of gene expression and cell proliferation.


2017 ◽  
Vol 176 (2) ◽  
pp. 1694-1708 ◽  
Author(s):  
Edgardo G. Bresso ◽  
Uciel Chorostecki ◽  
Ramiro E. Rodriguez ◽  
Javier F. Palatnik ◽  
Carla Schommer

2002 ◽  
Vol 88 (2) ◽  
pp. 340-355 ◽  
Author(s):  
Gary S. Stein ◽  
Jane B. Lian ◽  
Janet L. Stein ◽  
André J. van Wijnen ◽  
Martin Montecino ◽  
...  

1999 ◽  
Vol 53 (1) ◽  
pp. 495-523 ◽  
Author(s):  
Carl E. Bauer ◽  
Sylvie Elsen ◽  
Terry H. Bird

2020 ◽  
Vol 7 (1) ◽  
pp. 191048 ◽  
Author(s):  
Dimple Karia ◽  
Robert C. G. Gilbert ◽  
Antonio J. Biasutto ◽  
Catherine Porcher ◽  
Erika J. Mancini

Chromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes result in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin-modifying enzymes remains elusive. Recent evidence has implicated histone demethylases in normal haematopoietic differentiation as well as in malignant haematopoiesis. Here, we report an interaction between H3K4 demethylase JARID1A and the haematopoietic-specific master transcription proteins SCL and GATA1 in red blood cells. Specifically, we observe a direct physical contact between GATA1 and the second PHD domain of JARID1A. This interaction has potential implications for normal and malignant haematopoiesis.


2015 ◽  
Vol 290 (34) ◽  
pp. 20723-20733 ◽  
Author(s):  
Hideharu Hashimoto ◽  
Xing Zhang ◽  
Paula M. Vertino ◽  
Xiaodong Cheng

One of the most fundamental questions in the control of gene expression in mammals is how the patterns of epigenetic modifications of DNA are generated, recognized, and erased. This includes covalent cytosine methylation of DNA and its associated oxidation states. An array of AdoMet-dependent methyltransferases, Fe(II)- and α-ketoglutarate-dependent dioxygenases, base excision glycosylases, and sequence-specific transcription factors is responsible for changing, maintaining, and interpreting the modification status of specific regions of chromatin. This review focuses on recent developments in characterizing the functional and structural links between the modification status of two DNA bases 5-methylcytosine and thymine (5-methyluracil).


Sign in / Sign up

Export Citation Format

Share Document