Small Scale Vortices in Turbulent Flows

Author(s):  
Javier Jiménez
Keyword(s):  
Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 502 ◽  
Author(s):  
Jong-Hyun Kim ◽  
Wook Kim ◽  
Young Kim ◽  
Jung Lee

When we perform particle-based water simulation, water particles are often increased dramatically because of particle splitting around breaking holes to maintain the thin fluid sheets. Because most of the existing approaches do not consider the volume of the water particles, the water particles must have a very low mass to satisfy the law of the conservation of mass. This phenomenon smears the motion of the water, which would otherwise result in splashing, thereby resulting in artifacts such as numerical dissipation. Thus, we propose a new fluid-implicit, particle-based framework for maintaining and representing the thin sheets and turbulent flows of water. After splitting the water particles, the proposed method uses the ghost density and ghost mass to redistribute the difference in mass based on the volume of the water particles. Next, small-scale turbulent flows are formed in local regions and transferred in a smooth manner to the global flow field. Our results show us the turbulence details as well as the thin sheets of water, thereby obtaining an aesthetically pleasing improvement compared with existing methods.


1994 ◽  
Vol 47 (6S) ◽  
pp. S3-S13 ◽  
Author(s):  
Parviz Moin ◽  
Thomas Bewley

A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the Navier-Stokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.


2006 ◽  
Vol 220 (1) ◽  
pp. 290-311 ◽  
Author(s):  
K.A. Kemenov ◽  
S. Menon
Keyword(s):  

2018 ◽  
Vol 857 ◽  
pp. 270-290 ◽  
Author(s):  
Josef Hasslberger ◽  
Markus Klein ◽  
Nilanjan Chakraborty

This paper presents a detailed investigation of flow topologies in bubble-induced two-phase turbulence. Two freely moving and deforming air bubbles that have been suspended in liquid water under counterflow conditions have been considered for this analysis. The direct numerical simulation data considered here are based on the one-fluid formulation of the two-phase flow governing equations. To study the development of coherent structures, a local flow topology analysis is performed. Using the invariants of the velocity gradient tensor, all possible small-scale flow structures can be categorized into two nodal and two focal topologies for incompressible turbulent flows. The volume fraction of focal topologies in the gaseous phase is consistently higher than in the surrounding liquid phase. This observation has been argued to be linked to a strong vorticity production at the regions of simultaneous high fluid velocity and high interface curvature. Depending on the regime (steady/laminar or unsteady/turbulent), additional effects related to the density and viscosity jump at the interface influence the behaviour. The analysis also points to a specific term of the vorticity transport equation as being responsible for the induction of vortical motion at the interface. Besides the known mechanisms, this term, related to surface tension and gradients of interface curvature, represents another potential source of turbulence production that lends itself to further investigation.


2018 ◽  
Vol 848 ◽  
pp. 117-153 ◽  
Author(s):  
Nico Reinke ◽  
André Fuchs ◽  
Daniel Nickelsen ◽  
Joachim Peinke

Features of the turbulent cascade are investigated for various datasets from three different turbulent flows, namely free jets as well as wake flows of a regular grid and a cylinder. The analysis is focused on the question as to whether fully developed turbulent flows show universal small-scale features. Two approaches are used to answer this question. First, two-point statistics, namely structure functions of longitudinal velocity increments, and, second, joint multiscale statistics of these velocity increments are analysed. The joint multiscale characterisation encompasses the whole cascade in one joint probability density function. On the basis of the datasets, evidence of the Markov property for the turbulent cascade is shown, which corresponds to a three-point closure that reduces the joint multiscale statistics to simple conditional probability density functions (cPDFs). The cPDFs are described by the Fokker–Planck equation in scale and its Kramers–Moyal coefficients (KMCs). The KMCs are obtained by a self-consistent optimisation procedure from the measured data and result in a Fokker–Planck equation for each dataset. Knowledge of these stochastic cascade equations enables one to make use of the concepts of non-equilibrium thermodynamics and thus to determine the entropy production along individual cascade trajectories. In addition to this new concept, it is shown that the local entropy production is nearly perfectly balanced for all datasets by the integral fluctuation theorem (IFT). Thus, the validity of the IFT can be taken as a new law of the turbulent cascade and at the same time independently confirms that the physics of the turbulent cascade is a memoryless Markov process in scale. The IFT is taken as a new tool to prove the optimal functional form of the Fokker–Planck equations and subsequently to investigate the question of universality of small-scale turbulence in the datasets. The results of our analysis show that the turbulent cascade contains universal and non-universal features. We identify small-scale intermittency as a universality breaking feature. We conclude that specific turbulent flows have their own particular multiscale cascades, in other words, their own stochastic fingerprints.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


2012 ◽  
Vol 699 ◽  
pp. 50-78 ◽  
Author(s):  
G. Sardina ◽  
P. Schlatter ◽  
L. Brandt ◽  
F. Picano ◽  
C. M. Casciola

AbstractWe study the two main phenomenologies associated with the transport of inertial particles in turbulent flows, turbophoresis and small-scale clustering. Turbophoresis describes the turbulence-induced wall accumulation of particles dispersed in wall turbulence, while small-scale clustering is a form of local segregation that affects the particle distribution in the presence of fine-scale turbulence. Despite the fact that the two aspects are usually addressed separately, this paper shows that they occur simultaneously in wall-bounded flows, where they represent different aspects of the same process. We study these phenomena by post-processing data from a direct numerical simulation of turbulent channel flow with different populations of inertial particles. It is shown that artificial domain truncation can easily alter the mean particle concentration profile, unless the domain is large enough to exclude possible correlation of the turbulence and the near-wall particle aggregates. The data show a strong link between accumulation level and clustering intensity in the near-wall region. At statistical steady state, most accumulating particles aggregate in strongly directional and almost filamentary structures, as found by considering suitable two-point observables able to extract clustering intensity and anisotropy. The analysis provides quantitative indications of the wall-segregation process as a function of the particle inertia. It is shown that, although the most wall-accumulating particles are too heavy to segregate in homogeneous turbulence, they exhibit the most intense local small-scale clustering near the wall as measured by the singularity exponent of the particle pair correlation function.


This paper reviews how Kolmogorov postulated for the first time the existence of a steady statistical state for small-scale turbulence, and its defining parameters of dissipation rate and kinematic viscosity. Thence he made quantitative predictions of the statistics by extending previous methods of dimensional scaling to multiscale random processes. We present theoretical arguments and experimental evidence to indicate when the small-scale motions might tend to a universal form (paradoxically not necessarily in uniform flows when the large scales are gaussian and isotropic), and discuss the implications for the kinematics and dynamics of the fact that there must be singularities in the velocity field associated with the - 5/3 inertial range spectrum. These may be particular forms of eddy or ‘eigenstructure’ such as spiral vortices, which may not be unique to turbulent flows. Also, they tend to lead to the notable spiral contours of scalars in turbulence, whose self-similar structure enables the ‘box-counting’ technique to be used to measure the ‘capacity’ D K of the contours themselves or of their intersections with lines, D' K . Although the capacity, a term invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is like the exponent 2 p of a spectrum in being a measure of the distribution of length scales ( D' K being related to 2 p in the limit of very high Reynolds numbers), the capacity is also different in that experimentally it can be evaluated at local regions within a flow and at lower values of the Reynolds number. Thus Kolmogorov & Tikhomirov provide the basis for a more widely applicable measure of the self-similar structure of turbulence. Finally, we also review how Kolmogorov’s concept of the universal spatial structure of the small scales, together with appropriate additional physical hypotheses, enables other aspects of turbulence to be understood at these scales; in particular the general forms of the temporal statistics such as the high-frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and the perturbations to the small scales caused by non-isotropic, non-gaussian and inhomogeneous large-scale motions.


2013 ◽  
Vol 9 ◽  
pp. 3-15 ◽  
Author(s):  
Diego A. Donzis ◽  
Shriram Jagannathan
Keyword(s):  

2001 ◽  
Vol 436 ◽  
pp. 353-391 ◽  
Author(s):  
J. C. R. HUNT ◽  
N. D. SANDHAM ◽  
J. C. VASSILICOS ◽  
B. E. LAUNDER ◽  
P. A. MONKEWITZ ◽  
...  

Recent research is making progress in framing more precisely the basic dynamical and statistical questions about turbulence and in answering them. It is helping both to define the likely limits to current methods for modelling industrial and environmental turbulent flows, and to suggest new approaches to overcome these limitations. Our selective review is based on the themes and new results that emerged from more than 300 presentations during the Programme held in 1999 at the Isaac Newton Institute, Cambridge, UK, and on research reported elsewhere. A general conclusion is that, although turbulence is not a universal state of nature, there are certain statistical measures and kinematic features of the small-scale flow field that occur in most turbulent flows, while the large-scale eddy motions have qualitative similarities within particular types of turbulence defined by the mean flow, initial or boundary conditions, and in some cases, the range of Reynolds numbers involved. The forced transition to turbulence of laminar flows caused by strong external disturbances was shown to be highly dependent on their amplitude, location, and the type of flow. Global and elliptical instabilities explain much of the three-dimensional and sudden nature of the transition phenomena. A review of experimental results shows how the structure of turbulence, especially in shear flows, continues to change as the Reynolds number of the turbulence increases well above about 104 in ways that current numerical simulations cannot reproduce. Studies of the dynamics of small eddy structures and their mutual interactions indicate that there is a set of characteristic mechanisms in which vortices develop (vortex stretching, roll-up of instability sheets, formation of vortex tubes) and another set in which they break up (through instabilities and self- destructive interactions). Numerical simulations and theoretical arguments suggest that these often occur sequentially in randomly occurring cycles. The factors that determine the overall spectrum of turbulence were reviewed. For a narrow distribution of eddy scales, the form of the spectrum can be defined by characteristic forms of individual eddies. However, if the distribution covers a wide range of scales (as in elongated eddies in the ‘wall’ layer of turbulent boundary layers), they collectively determine the spectra (as assumed in classical theory). Mathematical analyses of the Navier–Stokes and Euler equations applied to eddy structures lead to certain limits being defined regarding the tendencies of the vorticity field to become infinitely large locally. Approximate solutions for eigen modes and Fourier components reveal striking features of the temporal, near-wall structure such as bursting, and of the very elongated, spatial spectra of sheared inhomogeneous turbulence; but other kinds of eddy concepts are needed in less structured parts of the turbulence. Renormalized perturbation methods can now calculate consistently, and in good agreement with experiment, the evolution of second- and third-order spectra of homogeneous and isotropic turbulence. The fact that these calculations do not explicitly include high-order moments and extreme events, suggests that they may play a minor role in the basic dynamics. New methods of approximate numerical simulations of the larger scales of turbulence or ‘very large eddy simulation’ (VLES) based on using statistical models for the smaller scales (as is common in meteorological modelling) enable some turbulent flows with a non-local and non-equilibrium structure, such as impinging or convective flows, to be calculated more efficiently than by using large eddy simulation (LES), and more accurately than by using ‘engineering’ models for statistics at a single point. Generally it is shown that where the turbulence in a fluid volume is changing rapidly and is very inhomogeneous there are flows where even the most complex ‘engineering’ Reynolds stress transport models are only satisfactory with some special adaptation; this may entail the use of transport equations for the third moments or non-universal modelling methods designed explicitly for particular types of flow. LES methods may also need flow-specific corrections for accurate modelling of different types of very high Reynolds number turbulent flow including those near rigid surfaces.This paper is dedicated to the memory of George Batchelor who was the inspiration of so much research in turbulence and who died on 30th March 2000. These results were presented at the last fluid mechanics seminar in DAMTP Cambridge that he attended in November 1999.


Sign in / Sign up

Export Citation Format

Share Document