Structural Systematization and Kinematic Analysis of Redundant Kinematic Chains with 7 and 8 Axes for Robots

Author(s):  
Ionel Staretu
2019 ◽  
Vol 16 (4) ◽  
pp. 172988141987066
Author(s):  
Liangwen Wang ◽  
Tuanhui Wang ◽  
Fannian Meng ◽  
Wenliao Du ◽  
Caidong Wang ◽  
...  

The 3-RRRS mechanism (RRRS refers to kinematic pairs of a branched chain consisting of three R pairs (Rotational pairs) and one S pair (Spherical pair), successively) is used between a moving platform and a static platform, through which six-dimensional motion of the moving platform relative to the static platform can be achieved. Selecting six independently drivable joints from nine active joints makes it problematic to deal analytically with the kinematics of the 3-RRRS mechanism. In this article, a novel computer-aided geometric method for kinematic analysis is developed. This method can automatically detect the independently drivable joints for arbitrary kinematic chains. This method can be easily implemented compared to the analytical method of the forward kinematics. Based on the constraint relationship of the 3-RRRS mechanism, a general 3-RRRS mechanism digital model is built in the SolidWorks Application Program Interface embedded Visual Basic environment, in which the platform sizes and active driving angles are driven by the parameterized model, to make the moving platform move to the corresponding pose. After the pose of the moving platform is confirmed, the coordinate system is built in a preliminary sketch. The parameters are measured by the SolidWorks measuring functions, and the pose of the moving platform is obtained by combining homogeneous matrices. Using the computer-aided geometric method, the detailed kinematics formula is not required. The accuracy and efficiency of the computer-aided geometric method were assessed with some examples of kinematic analysis for the 3-RRRS mechanism. The results showed that the proposed method obtained competitive precision and calculation time to the analytical method and is beneficial as a convenient solving process. By using Visual Basic programming, a reachable poses analysis of the mechanism can be merged into the kinematics analysis system of the computer-aided geometric method. The computer-aided geometric method could be widely applied to kinematics analysis of mechanisms.


1989 ◽  
Vol 111 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Lung-Wen Tsai ◽  
Jyh-Jone Lee

The kinematic structure of tendon-driven robotic mechanisms has been investigated with the aid of graph theory. The correspondence between the graph representation of the kinematic structure and the mechanism has been established. We have shown that the kinematic structure of tendon-driven kinematic chains is similar to that of epicyclic gear trains. We also have shown that, using the concept of fundamental circuits, the displacement equations of tendon-driven robotic mechanisms can be systematically derived from the kinematic structure. The theory has been demonstrated by the kinematic analysis of three articulated robotic devices.


2011 ◽  
Vol 52-54 ◽  
pp. 834-841
Author(s):  
Zhi Xin Shi ◽  
Mei Yan Ye ◽  
Yu Feng Luo ◽  
Ting Li Yang

This paper presents a simple and systematic modular approach for kinematic analysis of complicated Parallel Kinematic Manipulators (in short, PKMs) which coupled degrees are more than 2. (1) Single open chains (in short, SOCs) may be regarded as the basic modules of a PKM. Any PKM can always be decomposed automatically into a set of ordered SOCs, and these SOCs can also be used to recognize the basic kinematic chains contained in it. (2) The kinematic analysis algorithms and the compatibility conditions of the SOC modules are offered. (3) Directly applying the above SOC kinematic modules, the kinematic equations of a PKM can be automatically established. (4) In order to solve kinematic equations of complicated parallel manipulators which coupled degrees are more than 2, a new searching algorithm which requires no initial guess has been presented. The procedural approach is demonstrated in parallel manipulators.


2002 ◽  
Vol 124 (3) ◽  
pp. 419-426 ◽  
Author(s):  
L. Romdhane ◽  
Z. Affi ◽  
M. Fayet

In this work, we shall present a novel design of a 3-translational-DOF in-parallel manipulator having 3 linear actuators. Three variable length legs constitute the actuators of this manipulator, whereas two other kinematic chains with passive joints are used to eliminate the three rotations of the platform with respect to the base. This design presents several advantages compared to other designs of similar 3-translational-dof parallel manipulators. First, the proposed design uses only revolute or spherical joints as passive joints and hence, it avoids problems that are inherent to the nature of prismatic joints when loaded in arbitrary way. Second, the actuators are chosen to be linear and to be located in the three legs since this design presents higher rigidity than other. In the second part of this paper, we addressed the problem of kinematic analysis of the proposed in-parallel manipulator. A mixed geometric and vector formulation is used to show that two solutions exist for the forward kinematic analysis. The problem of singularities is also investigated using the same method. In this work, we investigated the singularities of the active legs and the two types of singularity were identified: architectural singularities and configurational singularities. The singularity of the passive chains, used to restrict the motion of the platform to only three translations, is also investigated. In the last part of this paper, we built a 3D solid model of the platform and the amplitude of rotation due to the deformation of the different links under some realistic load was determined. This allowed us to estimate the “orientation error” of the platform due to external moments. Moreover, this analysis allowed us to compare the proposed design (over constrained) with a modified one (not over constrained). This comparison confirmed the conclusion that the over constraint design has a better rigidity.


1998 ◽  
Vol 65 (1) ◽  
pp. 218-222
Author(s):  
L. Mentrasti

The paper discusses two paradoxes appearing in the kinematic analysis of interconnected rigid bodies: there are structures that formally satisfy the classical First and Second Theorem on kinematic chains, but do not have any motion. This can arise when some centers of instantaneous rotation (CIR) relevant to two bodies coincide with each other (first kind paradox) or when the CIRs relevant to three bodies lie on a straight line (second kind paradox). In these cases two sets of new theorems on the CIRs can be applied, pointing out sufficient conditions for the nonexistence of a rigid-body motion. The question is clarified by applying the presented theory to several examples.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov ◽  
Yuri Rodionov

The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design.


2004 ◽  
Vol 126 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jing Wang ◽  
Cle´ment M. Gosselin

This paper addresses the singularity analysis and the design of three new types of kinematically redundant parallel mechanisms, i.e., the four-degree-of-freedom planar and spherical parallel mechanisms and the seven-degree-of-freedom spatial Stewart platform. The main idea in the design of these parallel manipulators is the addition of one redundant degree of freedom in one of the kinematic chains of the nonredundant manipulator. Such manipulators can be used to avoid the singularities inside the workspace of nonredundant manipulators. After describing the geometry of the manipulators, the velocity equations are derived and the expressions for the Jacobian matrices are obtained. Then, the singularity conditions are discussed. Finally, the expressions of the singularity loci of the kinematically redundant mechanisms are obtained and the singularity loci of the nonredundant and redundant manipulators are compared. It is shown here that the conditions for the singularity of the redundant manipulators are reduced drastically relative to the nonredundant ones. As a result, the proposed kinematically redundant parallel manipulators may be of great interest in several applications.


2021 ◽  
Vol 24 (3) ◽  
pp. 97-103
Author(s):  
E.G. Krylov ◽  
R.F. Valiev

The analysis of constraints in plane mechanisms is an urgent problem in the theory of machines and mechanisms. Although kinematic pairs’ classification has been known for a long time, the issue of the conjugation of links, being at the heart of the analysis and synthesis of mechanisms and machines, is of considerable theoretical and practical interest and continues to attract scientists. One of the tasks that are solved in the process of analysis and synthesis of the structures of mechanisms is the re-placement of higher kinematic pairs by lower ones. As a rule, such a replacement is made to identify kinematic chains of zero mobility, Assur's structural groups, in a mechanism. The replacement may also aim at obtaining the necessary kinematic relations. That is because specific computational difficulties hamper the kinematic analysis of chains with higher kinematic pairs due to the relative sliding and shape irregularity of mating surfaces. Yet, the use of replacements to obtain kinematic and transmission functions is difficult due to nonisomorphism of the equivalent mechanism. Simultaneously, for mixed-type mechanisms, which include geared linkages, the equivalent replacement will allow unifying the kinematic analysis methods. The paper suggests the technology of replacing higher kinematic pairs with links with lower pairs as applied to a plane geared linkage. The technology is based on the properties of the involute of a circumference. The paper proved the structural and kinematic equivalence of such a replacement. The isomorphism of the equivalent linkage will enhance the kinematic analysis, make it possible using kinematic functions, and applying methods based on the instantaneous relative rotations of links, in particular, the Aronhold-Kennedy theorem. Another application of the replacement method presented in the paper will be the expansion of opportunities for identifying idle constraints in the mechanism.


Robotica ◽  
2012 ◽  
Vol 31 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Roberto Simoni ◽  
Celso Melchiades Doria ◽  
Daniel Martins

SUMMARYThis paper presents applications of group theory tools to simplify the analysis of kinematic chains associated with mechanisms and parallel manipulators. For the purpose of this analysis, a kinematic chain is described by its properties, i.e. degrees-of-control, connectivity and redundancy matrices. In number synthesis, kinematic chains are represented by graphs, and thus the symmetry of a kinematic chain is the same as the symmetry of its graph. We present a formal definition of symmetry in kinematic chains based on the automorphism group of its associated graph. The symmetry group of the graph is associated with the graph symmetry. By using the group structure induced by the symmetry of the kinematic chain, we prove that degrees-of-control, connectivity and redundancy are invariants by the action of the automorphism group of the graph. Consequently, it is shown that it is possible to reduce the size of these matrices and thus reduce the complexity of the kinematic analysis of mechanisms and parallel manipulators in early stages of mechanisms design.


Sign in / Sign up

Export Citation Format

Share Document