Influence of Intralaminar Damage on the Delamination Crack Evolution

Author(s):  
Cédric Huchette ◽  
Thomas Vandellos ◽  
Frédéric Laurin
2017 ◽  
Vol 59 (9) ◽  
pp. 811-821
Author(s):  
Hongbao Zhao ◽  
Huan Zhang ◽  
Guilin Hu ◽  
Feihu Wang ◽  
Hongbing Wang

2012 ◽  
Vol 588-589 ◽  
pp. 1930-1933
Author(s):  
Guo Song Han ◽  
Hai Yan Yang ◽  
Xin Pei Jiang

Based on industrial CT technique, Meso-mechanical experiment was conducted on construction waste recycled brick to get the real-time CT image and stress-strain curve of brick during the loading process. Box counting method was used to calculate the fractal dimension of the inner pore transfixion and crack evolution. The results showed that lots of pore in the interfacial transition zone mainly resulted in the damage of the brick. With the increase of stress, the opening through-pore appeared and crack expanded, and the fractal dimension increased.


2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
R. Wang ◽  
H. Kudo

An experimental and analytical investigation in cryogenic Mode I interlaminar fracture behavior and toughness of SL-E woven glass-epoxy laminates was conducted. Double cantilever beam (DCB) tests were performed at room temperature (R.T.), liquid nitrogen temperature (77 K), and liquid helium temperature (4 K) to evaluate the effect of temperature and geometrical variations on the interlaminar fracture toughness. The fracture surfaces were examined by scanning electron microscopy to verify the fracture mechanisms. A finite element model was used to perform the delamination crack analysis. Critical load levels and the geometric and material properties of the test specimens were input data for the analysis which evaluated the Mode I energy release rate at the onset of delamination crack propagation. The results of the finite element analysis are utilized to supplement the experimental data.


Sign in / Sign up

Export Citation Format

Share Document