Flow Characteristics and Void Fraction Prediction in Large Diameter Pipes

Author(s):  
Xiuzhong Shen ◽  
Joshua P. Schlegel ◽  
Shaowen Chen ◽  
Somboon Rassame ◽  
Matthew J. Griffiths ◽  
...  
Author(s):  
E. Pereyra ◽  
R. Arismendi ◽  
L. Gomez ◽  
R. Mohan ◽  
O. Shoham ◽  
...  

Determination of gas entrainment in slug flow is crucial for the prediction of slug flow characteristics and separator performance. A summary of all available correlations and mechanistic models for the prediction of slug liquid holdup is presented. Additionally, an experimental data base for slug liquid holdup has been collected from available literature. The data base shows a gap for large diameter pipes, high pressure systems and high viscosity liquids. A comparison between the predictions of available models and correlations against the data base is presented, identifying the range of applicability of the different methods. The correlations have been tuned with the new data showing an improved performance. Also, the uncertainties of the correlations parameters are evaluated and presented. Based on this study, a recommendation for the best method for predicting the slug liquid holdup is provided.


1978 ◽  
Vol 10 (1) ◽  
pp. 29-34 ◽  
Author(s):  
V. V. Chelyshev ◽  
V. G. Burdukovskii ◽  
B. N. Gubashov ◽  
V. V. Kirichenko

Metallurgist ◽  
1987 ◽  
Vol 31 (10) ◽  
pp. 320-321
Author(s):  
V. M. Ryabov ◽  
L. A. Usova

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Xinhai Li ◽  
Yong Cheng ◽  
Xiaoyan Ma ◽  
Xue Yang

The inner-flow of gasoline direct injection (GDI) injector nozzles plays an important role in the process of spray, and affects the mixture process in gasoline engine cylinder. The nozzle structure also affects the inner-flow of GDI injector. In order to obtain uniform performance of GDI injector, the size consistency of injector nozzle should be ensured. This paper researches the effect of nozzle length and diameter on the inner flow and analyzes the sensitivity of inner flow characteristics to these structural parameters. First, this paper reveals the process of inception, development, and saturated condition of cavitation phenomenon in injector nozzle. Second, the inner-nozzle flow characteristics are more sensitive to small diameter than large diameter under the short nozzle length, while the sensitivity of the inner-nozzle flow characteristics to large nozzle diameter becomes strong as the increase of the nozzle length. Finally, the influence of nozzle angle on the injection mass flow is studied, and the single nozzle fuel mass will increase as the decrease of nozzle angle α. And the sensitivity of inner-flow characteristic to nozzle angle becomes strong as the decrease of α.


Sign in / Sign up

Export Citation Format

Share Document