Soil Quality and Plant Nutrition

Author(s):  
Hassan R. El-Ramady ◽  
T. A. Alshaal ◽  
M. Amer ◽  
É. Domokos-Szabolcsy ◽  
N. Elhawat ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Léon Etienne Parent ◽  
William Natale ◽  
Gustavo Brunetto

Soils, nutrients and other factors support human food production. The loss of high-quality soils and readily minable nutrient sources pose a great challenge to present-day agriculture. A comprehensive scheme is required to make wise decisions on system’s sustainability and minimize the risk of crop failure. Soil quality provides useful indicators of its chemical, physical and biological status. Tools of precision agriculture and high-throughput technologies allow acquiring numerous soil and plant data at affordable costs in the perspective of customizing recommendations. Large and diversified datasets must be acquired uniformly among stakeholders to diagnose soil quality and plant nutrition at local scale, compare side-by-side defective and successful cases, implement trustful practices and reach high resource-use efficiency. Machine learning methods can combine numerous edaphic, managerial and climatic yield-impacting factors to conduct nutrient diagnosis and manage nutrients at local scale where factors interact. Compositional data analysis are tools to run numerical analyses on interacting components. Fractal models can describe aggregate stability tied to soil conservation practices and return site-specific indicators for decomposition rates of organic matter in relation to soil tillage and management. This chapter reports on machine learning, compositional and fractal models to support wise decisions on crop fertilization and soil conservation practices.


Author(s):  
S.M. Thomas ◽  
M.H.Beare C.D. Ford ◽  
V. Rietveld

Humping/hollowing and flipping are land development practices widely used on the West Coast to overcome waterlogging constraints to pasture production. However, there is very limited information about how the resulting "new" soils function and how their properties change over time following these extreme modifications. We hypothesised that soil quality will improve in response to organic matter inputs from plants and excreta, which will in turn increase nutrient availability. We tested this hypothesis by quantifying the soil organic matter and nutrient content of soils at different stages of development after modification. We observed improvements in soil quality with increasing time following soil modification under both land development practices. Total soil C and N values were very low following flipping, but over 8 years these values had increased nearly five-fold. Other indicators of organic matter quality such as hot water extractable C (HWC) and anaerobically mineralisable N (AMN) showed similar increases. With large capital applications of superphosphate fertiliser to flipped soils in the first year and regular applications of maintenance fertiliser, Olsen P levels also increased from values


2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


2006 ◽  
Vol 34 (1) ◽  
pp. 151-154 ◽  
Author(s):  
Katalin Debreczeni ◽  
Sándor Hoffmann ◽  
Katalin Berecz

Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2014 ◽  
Author(s):  
Matt D. Busse ◽  
Ken R. Hubbert ◽  
Emily E. Y. Moghaddas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document