Electrode Materials: State-of-the-Art and Experiments

Author(s):  
Naser Pour Aryan ◽  
Hans Kaim ◽  
Albrecht Rothermel
1988 ◽  
Vol 135 ◽  
Author(s):  
Michael M Thackeray

AbstractConsiderable efforts are in progress to develop rechargeable batteries as alternative systems to the nickel-cadmium battery. In this regard, several advances have been made in ambient-temperature lithium battery technology, and specifically in the engineering of rechargeable lithium/manganese dioxide cells. This paper reviews the current state of the art in rechargeable Li/MnO2battery technology; particular attention is paid to the structural features of various MnO2electrode materials which influence their electrochemical and cycling behaviour in lithium cells.


2016 ◽  
Vol 9 (3) ◽  
pp. 955-961 ◽  
Author(s):  
Jeongsik Yun ◽  
Jonas Pfisterer ◽  
Aliaksandr S. Bandarenka

This work reveals a three-stage mechanism of Na intercalation into one of the state-of-the-art battery electrode materials operating in aqueous electrolytes.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1952 ◽  
Author(s):  
Santanu Mukherjee ◽  
Shakir Bin Mujib ◽  
Davi Soares ◽  
Gurpreet Singh

Sodium ion batteries (SIBs) are being billed as an economical and environmental alternative to lithium ion batteries (LIBs), especially for medium and large-scale stationery and grid storage. However, SIBs suffer from lower capacities, energy density and cycle life performance. Therefore, in order to be more efficient and feasible, novel high-performance electrodes for SIBs need to be developed and researched. This review aims to provide an exhaustive discussion about the state-of-the-art in novel high-performance anodes and cathodes being currently analyzed, and the variety of advantages they demonstrate in various critically important parameters, such as electronic conductivity, structural stability, cycle life, and reversibility.


2014 ◽  
Vol 7 (4) ◽  
pp. 1250-1280 ◽  
Author(s):  
Marta Sevilla ◽  
Robert Mokaya

This review presents the state-of-the-art with respect to synthesis of activated carbons, and their use as electrode materials in supercapacitors and as hydrogen storage materials.


2010 ◽  
Vol 22 (35) ◽  
pp. E170-E192 ◽  
Author(s):  
Jordi Cabana ◽  
Laure Monconduit ◽  
Dominique Larcher ◽  
M. Rosa Palacín

2021 ◽  
Author(s):  
Benadict Joseph Xavier ◽  
Christy Ezhilarasi J ◽  
Sea-Fue Wang ◽  
Elanthamilan Elaiyappillai ◽  
Sriram Balasubramanian ◽  
...  

State-of-the-art, electrochemical applications recently employ various activated carbons combined with transition metal oxides as electrode materials; exhibit superior conductivity and tailored porosity to offer both rapid electron transfer. In this...


2010 ◽  
Vol 22 (35) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jordi Cabana ◽  
Laure Monconduit ◽  
Dominique Larcher ◽  
M. Rosa Palacín

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3453 ◽  
Author(s):  
Alain Mauger ◽  
Christian M. Julien

Sodium-ion batteries (SIBs) were investigated as recently as in the seventies. However, they have been overshadowed for decades, due to the success of lithium-ion batteries that demonstrated higher energy densities and longer cycle lives. Since then, the witness a re-emergence of the SIBs and renewed interest evidenced by an exponential increase of the publications devoted to them (about 9000 publications in 2019, more than 6000 in the first six months this year). This huge effort in research has led and is leading to an important and constant progress in the performance of the SIBs, which have conquered an industrial market and are now commercialized. This progress concerns all the elements of the batteries. We have already recently reviewed the salts and electrolytes, including solid electrolytes to build all-solid-state SIBs. The present review is then devoted to the electrode materials. For anodes, they include carbons, metal chalcogenide-based materials, intercalation-based and conversion reaction compounds (transition metal oxides and sulfides), intermetallic compounds serving as functional alloying elements. For cathodes, layered oxide materials, polyionic compounds, sulfates, pyrophosphates and Prussian blue analogs are reviewed. The electrode structuring is also discussed, as it impacts, importantly, the electrochemical performance. Attention is focused on the progress made in the last five years to report the state-of-the-art in the performance of the SIBs and justify the efforts of research.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 130 ◽  
Author(s):  
Honeychurch

The benzodiazepine class of drugs are characterised by a readily electrochemically reducible azomethine group. A number are also substituted by other electrochemically active nitro, N-oxide, and carbonyl groups, making them readily accessible to electrochemical determination. Techniques such as polarography, voltammetry, and potentiometry have been employed for pharmaceutical and biomedical samples, requiring little sample preparation. This review describes current developments in the design and applications of electrochemical-based approaches for the determination of the benzodiazepine class of drugs form their introduction in the early 1960s to 2019. Throughout this period, state-of-the-art electroanalytical techniques have been reported for their determination. Polarography was first employed focused on mechanistic investigations. Subsequent studies showed the adsorption of many the benzodiazepines at Hg electrodes allowed for the highly sensitive technique of adsorptive stripping voltammetry to be employed. The development and introduction of other working electrode materials such as carbon led to techniques such as voltammetry to become commonly reported, and the modification of these electrodes has now become the most commonly employed approach using molecularly imprinting and nanotechnology.


2020 ◽  
Vol 8 (31) ◽  
pp. 15479-15512 ◽  
Author(s):  
Cuiping Han ◽  
Jiaxiong Zhu ◽  
Chunyi Zhi ◽  
Hongfei Li

This review provides timely access to state-of-the-art advances of organic electrode materials in aqueous rechargeable batteries.


Sign in / Sign up

Export Citation Format

Share Document