scholarly journals Electrode Materials for High-Performance Sodium-Ion Batteries

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1952 ◽  
Author(s):  
Santanu Mukherjee ◽  
Shakir Bin Mujib ◽  
Davi Soares ◽  
Gurpreet Singh

Sodium ion batteries (SIBs) are being billed as an economical and environmental alternative to lithium ion batteries (LIBs), especially for medium and large-scale stationery and grid storage. However, SIBs suffer from lower capacities, energy density and cycle life performance. Therefore, in order to be more efficient and feasible, novel high-performance electrodes for SIBs need to be developed and researched. This review aims to provide an exhaustive discussion about the state-of-the-art in novel high-performance anodes and cathodes being currently analyzed, and the variety of advantages they demonstrate in various critically important parameters, such as electronic conductivity, structural stability, cycle life, and reversibility.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3453 ◽  
Author(s):  
Alain Mauger ◽  
Christian M. Julien

Sodium-ion batteries (SIBs) were investigated as recently as in the seventies. However, they have been overshadowed for decades, due to the success of lithium-ion batteries that demonstrated higher energy densities and longer cycle lives. Since then, the witness a re-emergence of the SIBs and renewed interest evidenced by an exponential increase of the publications devoted to them (about 9000 publications in 2019, more than 6000 in the first six months this year). This huge effort in research has led and is leading to an important and constant progress in the performance of the SIBs, which have conquered an industrial market and are now commercialized. This progress concerns all the elements of the batteries. We have already recently reviewed the salts and electrolytes, including solid electrolytes to build all-solid-state SIBs. The present review is then devoted to the electrode materials. For anodes, they include carbons, metal chalcogenide-based materials, intercalation-based and conversion reaction compounds (transition metal oxides and sulfides), intermetallic compounds serving as functional alloying elements. For cathodes, layered oxide materials, polyionic compounds, sulfates, pyrophosphates and Prussian blue analogs are reviewed. The electrode structuring is also discussed, as it impacts, importantly, the electrochemical performance. Attention is focused on the progress made in the last five years to report the state-of-the-art in the performance of the SIBs and justify the efforts of research.


2020 ◽  
Vol 10 (9) ◽  
pp. 3098 ◽  
Author(s):  
Yaohui Zhang ◽  
Nana Wang ◽  
Zhongchao Bai

Limited by the development of energy storage technology, the utilization ratio of renewable energy is still at a low level. Lithium/sodium ion batteries (LIBs/SIBs) with high-performance electrochemical performances, such as large-scale energy storage, low costs and high security, are expected to improve the above situation. Currently, developing anode materials with better electrochemical performances is the main obstacle to the development of LIBs/SIBs. Recently, a variety of studies have focused on cobalt-based anode materials applied for LIBs/SIBs, owing to their high theoretical specific capacity. This review systematically summarizes the recent status of cobalt-based anode materials in LIBs/SIBs, including Li+/Na+ storage mechanisms, preparation methods, applications and strategies to improve the electrochemical performance of cobalt-based anode materials. Furthermore, the current challenges and prospects are also discussed in this review. Benefitting from these results, cobalt-based materials can be the next-generation anode for LIBs/SIBs.


2017 ◽  
Vol 5 (27) ◽  
pp. 13882-13906 ◽  
Author(s):  
Weihan Li ◽  
Minsi Li ◽  
Keegan R. Adair ◽  
Xueliang Sun ◽  
Yan Yu

Carbon nanofibers (CNFs) belong to a class of one-dimensional (1D) carbonaceous materials with excellent electronic conductivity, leading to their use as conductive additives in electrode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs).


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Natalia Voronina ◽  
Seung-Taek Myung

The development of sodium-ion batteries (SIBs), which are promising alternatives to lithium-ion batteries (LIBs), offers new opportunities to address the depletion of Li and Co resources; however, their implementation is hindered by their relatively low capacities and moderate operation voltages and resulting low energy densities. To overcome these limitations, considerable attention has been focused on anionic redox reactions, which proceed at high voltages with extra capacity. This manuscript covers the origin and recent development of anionic redox electrode materials for SIBs, including state-of-the-art P2- and O3-type layered oxides. We sequentially analyze the anion activity–structure–performance relationship in electrode materials. Finally, we discuss remaining challenges and suggest new strategies for future research in anion-redox cathode materials for SIBs.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing He ◽  
Ping Man ◽  
Qichong Zhang ◽  
Huili Fu ◽  
Zhenyu Zhou ◽  
...  

AbstractExtensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries (ARSIBs) for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes. However, it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials. In this work, nanocube-like KNiFe(CN)6 (KNHCF) and rugby ball-like NaTi2(PO4)3 (NTP) are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode (KNHCF@CNTF) and anode (NTP@CNTF), respectively. Taking advantage of their high conductivity, fast charge transport paths, and large accessible surface area, the as-fabricated binder-free electrodes display admirable electrochemical performance. Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF, a high-performance quasi-solid-state fiber-shaped ARSIB (FARSIB) is successfully assembled for the first time. Significantly, the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm−3 and impressive energy density of 39.32 mWh cm−3. More encouragingly, our FARSIB delivers superior mechanical flexibility with only 5.7% of initial capacity loss after bending at 90° for over 3000 cycles. Thus, this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.


2021 ◽  
Author(s):  
Huilin Fan ◽  
Pengcheng Mao ◽  
Hongyu Sun ◽  
Yuan Wang ◽  
Sajjad S. Mofarah ◽  
...  

Metal tellurides (MTs) have emerged as highly promising candidate anode materials for state-of-the-art lithium-ion batteries (LIBs) and sodium ion batteries (SIBs). This is owing to the unique crystal structure, high...


2017 ◽  
Vol 19 (26) ◽  
pp. 17270-17277 ◽  
Author(s):  
Yubin Niu ◽  
Maowen Xu ◽  
Chunlong Dai ◽  
Bolei Shen ◽  
Chang Ming Li

Na6.24Fe4.88(P2O7)4 is one of the intensively investigated polyanionic compounds and has shown high rate discharge capacity, but its relatively low electronic conductivity hampers the high performance of the batteries.


Author(s):  
Sankha Ghosh

Seeking cheap, efficient and sustainable alternatives to lithium-ion batteries (LIBs), sodium-ion batteries (SIBs) has emerged as a realm of research, due to the abundance of Na in the earth's crust.


Sign in / Sign up

Export Citation Format

Share Document