The Krasnoselskii–Rabinowitz Bifurcation Theorem

Author(s):  
Robert F. Brown
Keyword(s):  
1977 ◽  
Vol 25 (4) ◽  
pp. 412-424 ◽  
Author(s):  
Paul H Rabinowitz

2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Hongwei Luo ◽  
Jiangang Zhang ◽  
Wenju Du ◽  
Jiarong Lu ◽  
Xinlei An

A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine governing system with double delays under the four different cases. Corresponding stability theorem and Hopf bifurcation theorem of the system are obtained at equilibrium points. And then the stability of periodic solution and the direction of the Hopf bifurcation are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the correctness of the theoretical results.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150143
Author(s):  
Zunxian Li ◽  
Chengyi Xia

In this paper, we explore the dynamical behaviors of the 1D two-grid coupled cellular neural networks. Assuming the boundary conditions of zero-flux type, the stability of the zero equilibrium is discussed by analyzing the relevant eigenvalue problem with the aid of the decoupling method, and the conditions for the occurrence of Turing instability and Hopf bifurcation at the zero equilibrium are derived. Furthermore, the approximate expressions of the bifurcating periodic solutions are also obtained by using the Hopf bifurcation theorem. Finally, numerical simulations are provided to demonstrate the theoretical results.


2008 ◽  
Vol 18 (10) ◽  
pp. 3013-3027 ◽  
Author(s):  
MAOAN HAN ◽  
JIAO JIANG ◽  
HUAIPING ZHU

As we know, Hopf bifurcation is an important part of bifurcation theory of dynamical systems. Almost all known works are concerned with the bifurcation and number of limit cycles near a nondegenerate focus or center. In the present paper, we study a general near-Hamiltonian system on the plane whose unperturbed system has a nilpotent center. We obtain an expansion for the first order Melnikov function near the center together with a computing method for the first coefficients. Using these coefficients, we obtain a new bifurcation theorem concerning the limit cycle bifurcation near the nilpotent center. An interesting application example & a cubic system having five limit cycles & is also presented.


2018 ◽  
Vol 198 (3) ◽  
pp. 773-794
Author(s):  
Pablo Amster ◽  
Pierluigi Benevieri ◽  
Julián Haddad

1974 ◽  
Vol 54 (4) ◽  
pp. 328-339 ◽  
Author(s):  
S. Fučík ◽  
J. Nečas ◽  
J. Souček ◽  
V. Souček
Keyword(s):  

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Elham Shamsara ◽  
Zahra Afsharnezhad ◽  
Elham Javidmanesh

In this paper, we present a discontinuous cytotoxic T cells (CTLs) response for HTLV-1. Moreover, a delay parameter for the activation of CTLs is considered. In fact, a system of differential equation with discontinuous right-hand side with delay is defined for HTLV-1. For analyzing the dynamical behavior of the system, graphical Hopf bifurcation is used. In general, Hopf bifurcation theory will help to obtain the periodic solutions of a system as parameter varies. Therefore, by applying the frequency domain approach and analyzing the associated characteristic equation, the existence of Hopf bifurcation by using delay immune response as a bifurcation parameter is determined. The stability of Hopf bifurcation periodic solutions is obtained by the Nyquist criterion and the graphical Hopf bifurcation theorem. At the end, numerical simulations demonstrated our results for the system of HTLV-1.


Sign in / Sign up

Export Citation Format

Share Document