Optimal Defense Strategies Under Varying Consumer Distributional Patterns and Market Maturity

Author(s):  
Ulrike Schuster ◽  
Juergen Woeckl
PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e101415 ◽  
Author(s):  
Selina Våge ◽  
Julia E. Storesund ◽  
Jarl Giske ◽  
T. Frede Thingstad

Author(s):  
Yuling Liu ◽  
Dengguo Feng ◽  
Yifeng Lian ◽  
Kai Chen ◽  
Yingjun Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuwen Zhu ◽  
Lei Yu ◽  
Houhua He ◽  
Yitong Meng

Network defenders always face the problem of how to use limited resources to make the most reasonable decision. The network attack-defense game model is an effective means to solve this problem. However, existing network attack-defense game models usually assume that defenders will no longer change defense strategies after deploying them. However, in an advanced network attack-defense confrontation, defenders usually redeploy defense strategies for different attack situations. Therefore, the existing network attack-defense game models are challenging to accurately describe the advanced network attack-defense process. To address the above challenges, this paper proposes a defense strategy selection method based on the network attack-defense wargame model. We model the advanced network attack-defense confrontation process as a turn-based wargame in which both attackers and defenders can continuously adjust their strategies in response to the attack-defense posture and use the Monte Carlo tree search method to solve the optimal defense strategy. Finally, a network example is used to illustrate the effectiveness of the model and method in selecting the optimal defense strategy.


2020 ◽  
Author(s):  
Tam ngoc Nguyen

We proposes a new scientific model that enables the ability to collect evidence, and explain the motivations behind people's cyber malicious/ethical behaviors. Existing models mainly focus on detecting already-committed actions and associated response strategies, which is not proactive. That is the reason why little has been done in order to prevent malicious behaviors early, despite the fact that issues like insider threats cost corporations billions of dollars annually, and its time to detection often lasts for more than a year.We address those problems by our main contributions of:+ A better model for ethical/malicious behavioral analysis with a strong focus on understanding people's motivations. + Research results regarding ethical behaviors of more than 200 participants, during the historic Covid-19 pandemic. + Novel attack and defense strategies based on validated model and survey results. + Strategies for continuous model development and integration, utilizing latest technologies such as natural language processing, and machine learning. We employed mixed-mode research approach of: integrating and combining proven behavioral science models, case studying of hackers, survey research, quantitative analysis, and qualitative analysis. For practical deployments, corporations may utilize our model in: improving HR processes and research, prioritizing plans based on the model's informed human behavioral metrics, better analysis in existing or potential cyber insider threat cases, generating more defense tactics in information warfare and so on.


Author(s):  
Mauro Gobbi ◽  
Valeria Lencioni

Carabid beetles and chironomid midges are two dominant cold-adapted taxa, respectively on glacier forefiel terrains and in glacial-stream rivers. Although their sensitivity to high altitude climate warming is well known, no studies compare the species assemblages exhibited in glacial systems. Our study compares diversity and distributional patterns of carabids and chironomids in the foreland of the receding Amola glacier in central-eastern Italian Alps. Carabids were sampled by pitfall traps; chironomids by kick sampling in sites located at the same distance from the glacier as the terrestrial ones. The distance from the glacier front was considered as a proxy for time since deglaciation since these variables are positively correlated. We tested if the distance from the glacier front affects: i) the species richness; ii) taxonomic diversity; and iii) species turnover. Carabid species richness and taxonomic diversity increased positively from recently deglaciated sites (those c. 160 m from the glacier front) to sites deglaciated more than 160yrs ago (those located >1300 m from glacier front). Species distributions along the glacier foreland were characterized by mutually exclusive species. Conversely, no pattern in chironomid species richness and turnover was observed. Interestingly, taxonomic diversity increased significantly: closely related species were found near the glacier front, while the most taxonomically diverse species assemblages were found distant from the glacier front. Increasing glacial retreat differently affect epigeic and aquatic insect taxa: carabids respond faster to glacier retreat than do chironomids, at least in species richness and species turnover patterns.


Author(s):  
Bianka Siewert

AbstractThe well-known photosensitizers hypericin, harmane, and emodin are typical pigments of certain mushroom species—is this a coincidence or an indication towards a photoactivated defense mechanism in the phylum Basidiomycota? This perspective article explores this hypothesis by cross-linking the chemistry of fungal pigments with structural requirements from known photosensitizers and insights from photoactivated strategies in the kingdom Plantae. Thereby, light is shed on a yet unexplored playground dealing with ecological questions, photopharmaceutical opportunities, and biotechnological potentials.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 169
Author(s):  
Danai-Eleni Michailidou ◽  
Maria Lazarina ◽  
Stefanos P. Sgardelis

The ongoing climate change and the unprecedented rate of biodiversity loss render the need to accurately project future species distributional patterns more critical than ever. Mounting evidence suggests that not only abiotic factors, but also biotic interactions drive broad-scale distributional patterns. Here, we explored the effect of predator-prey interaction on the predator distribution, using as target species the widespread and generalist grass snake (Natrix natrix). We used ensemble Species Distribution Modeling (SDM) to build a model only with abiotic variables (abiotic model) and a biotic one including prey species richness. Then we projected the future grass snake distribution using a modest emission scenario assuming an unhindered and no dispersal scenario. The two models performed equally well, with temperature and prey species richness emerging as the top drivers of species distribution in the abiotic and biotic models, respectively. In the future, a severe range contraction is anticipated in the case of no dispersal, a likely possibility as reptiles are poor dispersers. If the species can disperse freely, an improbable scenario due to habitat loss and fragmentation, it will lose part of its contemporary distribution, but it will expand northwards.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 769
Author(s):  
Dong Mu ◽  
Xiongping Yue ◽  
Huanyu Ren

A cyber-physical supply network is composed of an undirected cyber supply network and a directed physical supply network. Such interdependence among firms increases efficiency but creates more vulnerabilities. The adverse effects of any failure can be amplified and propagated throughout the network. This paper aimed at investigating the robustness of the cyber-physical supply network against cascading failures. Considering that the cascading failure is triggered by overloading in the cyber supply network and is provoked by underload in the physical supply network, a realistic cascading model for cyber-physical supply networks is proposed. We conducted a numerical simulation under cyber node and physical node failure with varying parameters. The simulation results demonstrated that there are critical thresholds for both firm’s capacities, which can determine whether capacity expansion is helpful; there is also a cascade window for network load distribution, which can determine the cascading failures occurrence and scale. Our work may be beneficial for developing cascade control and defense strategies in cyber-physical supply networks.


Sign in / Sign up

Export Citation Format

Share Document