Towards an Embedded Real-Time High Resolution Vision System

Author(s):  
Fredrik Ekstrand ◽  
Carl Ahlberg ◽  
Mikael Ekström ◽  
Giacomo Spampinato
2014 ◽  
Vol 668-669 ◽  
pp. 1098-1101
Author(s):  
Jian Wang ◽  
Zhen Hai Zhang ◽  
Ke Jie Li ◽  
Hai Yan Shao ◽  
Tao Xu ◽  
...  

Catadioptric panoramic vision system has been widely used in many fields, and also plays a very important role in environment perception of unmanned platform especially. However, the resolution of system is not very high, usually less than 5 million pixels at present. Even if the resolution is high, but the unwrapping and rectification of panoramic video is carried out off-line. Further, the system is also applied in stationary state or low stationary moving. This paper proposes an unwrapping and rectification method based on high-resolution catadioptric panoramic vision system used during non-stationary moving. It can segment dynamic circular mark region accurately and get the coordinates of center of circular image real-timely, shorten the time of image processing, meanwhile the coordinates of center and radius of the circular mark region would be obtained, so the image distortion caused by inaccurate center coordinates can be reduced. During image rectification, after achieving radial distortions parameters (K1, K2, K3), decentering distortions parameters (P1, P2), and the correction factor that has no physical meanings, we can used those for fitting the rectification polynomial, so the panoramic video can be rectified without distortion.


Author(s):  
Y. Wang ◽  
M. Peng ◽  
Z. Liu ◽  
W. Wan ◽  
K. Di ◽  
...  

Abstract. Binocular vision system is an essential way for target localization in many fields, which has been widely used as payload of unmanned surface vehicles (USV). High resolution cameras, which can provide richer information, are utilized more often on a USV. This brings challenges of computing tremendous data for target detection and localization in real-time. In this paper, we propose an framework to automatically detect and localize target using high resolution binocular cameras for environment perception of USV. Instead of processing the whole image, the feature extraction and matching are executed within the target region of interest determined by a deep convolution network. Then the target can be localized using triangulation principle with calibrated binocular camera parameters. Experiments show that our proposed strategy can achieve both precise detection and high accurate localization results in real-time applications.


Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


2005 ◽  
Vol 56 (8-9) ◽  
pp. 831-842 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi

Author(s):  
Yuefeng Wang ◽  
Kuang Mao ◽  
Tong Chen ◽  
Yanglong Yin ◽  
Shuibing He ◽  
...  

2021 ◽  
Vol 20 (3) ◽  
pp. 1-22
Author(s):  
David Langerman ◽  
Alan George

High-resolution, low-latency apps in computer vision are ubiquitous in today’s world of mixed-reality devices. These innovations provide a platform that can leverage the improving technology of depth sensors and embedded accelerators to enable higher-resolution, lower-latency processing for 3D scenes using depth-upsampling algorithms. This research demonstrates that filter-based upsampling algorithms are feasible for mixed-reality apps using low-power hardware accelerators. The authors parallelized and evaluated a depth-upsampling algorithm on two different devices: a reconfigurable-logic FPGA embedded within a low-power SoC; and a fixed-logic embedded graphics processing unit. We demonstrate that both accelerators can meet the real-time requirements of 11 ms latency for mixed-reality apps. 1


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhicheng Xiao ◽  
Andrea Alù

Abstract Fano resonances feature an asymmetric lineshape with controllable linewidth, stemming from the interplay between bright and dark resonances. They provide efficient opportunities to shape the scattering lineshape, but they usually lack flexibility and tunability and are hindered by loss in passive systems. Here, we explore a hybrid parity-time (PT) and anti-parity-time (APT) symmetric system supporting unitary scattering features with highly tunable Fano resonances. The PT-APT-symmetric system can be envisioned in nanophotonic and microwave circuit implementations, allowing for real-time control of the scattering lineshape and its underlying singularities. Our study shows the opportunities enabled by non-Hermitian platforms to control scattering lineshapes for a plethora of photonic, electronic, and quantum systems, with potential for high-resolution imaging, switching, sensing, and multiplexing.


Sign in / Sign up

Export Citation Format

Share Document