An Open-Source Hardware Approach for High Performance Low-Cost QoS Monitoring of VoIP Traffic

Author(s):  
Gianni Antichi ◽  
Lisa Donatini ◽  
Rosario G. Garroppo ◽  
Stefano Giordano ◽  
Andrew W. Moore
2021 ◽  
Vol 784 ◽  
pp. 147119
Author(s):  
Miguel Martín-Sómer ◽  
Jose Moreno-SanSegundo ◽  
Carmen Álvarez-Fernández ◽  
Rafael van Grieken ◽  
Javier Marugán

Author(s):  
Antor Mahamudul Hashan ◽  
Abdullah Haidari ◽  
Srishti Saha ◽  
Titas Paul

Due to the rapid development of technology, the use of numerically controlled machines in the industry is increasing. The main idea behind this paper is computer-aided design (CAD) based low-cost computer numerical control 2D drawing robot that can accurately draw complex circuits, diagrams, logos, etc. The system is created using open-source hardware and software, which makes it available at a low cost. The open-source LibreCAD application has been used for computer-aided design. Geometric data of a CAD model is converted to coordinate points using the python-based F-Engrave application. This system uses the Arduino UNO board as a signal generator of the universal g-code sender without compromising the performance. The proposed drawing robot is designed as a low-cost robot for educational purposes and aims to increase the student's interest in robotics and computer-aided design (CAD) skills to the next level. The drawing robot structure has been developed, and it meets the requirements of low cost with satisfactory experimental results.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Scott A. Longwell ◽  
Polly M. Fordyce

MicrIO is a low-cost, open-source hardware and software solution for automated sample input/output, bridging the gap between microfluidic devices and standard multiwell plates.


2015 ◽  
Vol 48 (29) ◽  
pp. 117-122 ◽  
Author(s):  
P. Reguera ◽  
D. García ◽  
M. Domínguez ◽  
M.A. Prada ◽  
S. Alonso

2020 ◽  
Author(s):  
Matthew Wincott ◽  
Andrew Jefferson ◽  
Ian M. Dobbie ◽  
Martin J. Booth ◽  
Ilan Davis ◽  
...  

ABSTRACTCommercial fluorescence microscope stands and fully automated XYZt fluorescence imaging systems are generally beyond the limited budgets available for teaching and outreach. We have addressed this problem by developing “Microscopi”, an accessible, affordable, DIY automated imaging system that is built from 3D printed and commodity off-the-shelf hardware, including electro-mechanical, computer and optical components. Our design features automated sample navigation and image capture with a simple web-based graphical user interface, accessible with a tablet or other mobile device. The light path can easily be switched between different imaging modalities. The open source Python-based control software allows the hardware to be driven as an integrated imaging system. Furthermore, the microscope is fully customisable, which also enhances its value as a learning tool. Here, we describe the basic design and demonstrate imaging performance for a range of easily sourced specimens.HighlightsPortable, low cost, self-build from 3D printed and commodity componentsMultimodal imaging: bright field, dark field, pseudo-phase and fluorescenceAutomated XYZt imaging from a tablet or smartphone via a simple GUIWide ranging applications in teaching, outreach and fieldworkOpen source hardware and software design, allowing user modification


Sign in / Sign up

Export Citation Format

Share Document