fraction collector
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
David Díaz ◽  
Ana de la Iglesia ◽  
Francisco Barreto ◽  
Ricardo Borges
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 920
Author(s):  
Francisco J. Espinosa ◽  
Rosa M. Toledano ◽  
Juan C. Andini ◽  
Jose M. Cortés ◽  
Ana M. Vázquez

There is an increasing demand for automatic, reliable and sensitive analytical methods for determining trace levels of phthalic acid esters (PAEs) in environmental samples. While on line coupled liquid chromatography-gas chromatography (LC-GC) has been proof to be a powerful tool for trace-level analyses in complex matrices, the present work presents a new totally automated on line LC-GC method, using the Through Oven Transfer Adsorption Desorption (TOTAD) interface, for the analysis of four of the main phthalates, dibuthyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP) and diethylhexyl phthalate (DEHP), in a matrix as complex as leachate. The sample is directly injected into the LC injector valve with no sample pretreatment other than simple filtration. The LC step separates the target analytes from matrix interference. Two different LC fractions are collected in a purposely designed fraction collector and then transferred to the TOTAD interface, which concentrates the analytes, totally eliminates the solvent and transfers the analytes to the GC-MS system, where the analysis is carried out. The LOD of the method varied from 0.1 µg/L (DEHP) to 1.4 µg/L (DMP), RSD for retention time below 0.14% and for absolute peak areas below 12% and linearity from 1 µg/L to 1000 µg/L (R2 > 0.99), except in the case of DEHP (linearity from 1 to 250 µg/L, R2 = 0.94). The method was applied to the analysis of the target analytes in samples collected from a municipal solid waste (MSW) landfill in Rosario (Argentina).


2021 ◽  
Author(s):  
A. Sina Booeshaghi ◽  
Yeokyoung (Anne) Kil ◽  
Kyung Hoi (Joseph) Min ◽  
Jase Gehring ◽  
Lior Pachter

AbstractWe present colosseum, a low-cost, modular, and automated fluid sampling device for scalable fluidic applications. The colosseum fraction collector uses a single motor, can be built for less than $100 using off-the-shelf and 3D-printed components, and can be assembled in less than an hour. Build Instructions and source files are available at https://github.com/pachterlab/colosseum.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 129
Author(s):  
Dominik M. Loy ◽  
Rafał Krzysztoń ◽  
Ulrich Lächelt ◽  
Joachim O. Rädler ◽  
Ernst Wagner

Active pharmaceutical ingredients (API) with suboptimal pharmacokinetic properties may require formulation into nanoparticles. In addition to the quality of the excipients, production parameters are crucial for producing nanoparticles which reliably deliver APIs to their target. Microfluidic platforms promise increased control over the formulation process due to the decreased degrees of freedom at the micro- and nanoscale. Publications about these platforms usually provide only limited information about the soft- and hardware required to integrate the microfluidic chip seamlessly into an experimental set-up. We describe a modular, low-budget prototype for microfluidic mixing in detail. The prototype consists of four modules. The control module is a raspberry pi executing customizable python scripts to control the syringe pumps and the fraction collector. The feeding module consists of up to three commercially available, programable syringe pumps. The formulation module can be any macro- or microfluidic chip connectable to syringe pumps. The collection module is a custom-built fraction collector. We describe each feature of the working prototype and demonstrate its power with polyplexes formulated from siRNA and two different oligomers that are fed to the chip at two different stages during the assembly of the nanoparticles.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lijun An ◽  
Xie-An Yu ◽  
Wei Liu ◽  
Jin Li ◽  
Yan-Xu Chang

Neuraminidase plays an essential role in the spread of influenza viruses via cleaving sialic acids from the host cell receptors and virions. Neuraminidase has been regarded as an essential target for prevention and treatment of influenza infection. The one-step high-performance liquid chromatography-fraction collector (HPLC-FC) was selected to prepare fractions from Reduning (RDN) injection, while ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) was used to identify fractions depending on their retention time and molecular ion. As a result, 75 fractions were prepared and 28 fractions out of them exhibited NA inhibitory effects with the dose-effect relationship. Exploring it further, six components including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C were the main components that accounted for almost 80% of inhibitory activity of RDN injection. Accordingly, these results demonstrated that this strategy could not only rapidly identify but also accurately screen active components from traditional Chinese medicine.


2020 ◽  
Vol 21 (15) ◽  
pp. 5361 ◽  
Author(s):  
Hussein Kaddour ◽  
Yuan Lyu ◽  
Nadia Shouman ◽  
Mahesh Mohan ◽  
Chioma M. Okeoma

Acellular particles (extracellular vesicles and membraneless condensates) have important research, drug discovery, and therapeutic implications. However, their isolation and retrieval have faced enormous challenges, impeding their use. Here, a novel size-guided particle purification liquid chromatography (PPLC) is integrated into a turbidimetry-enabled system for dye-free isolation, online characterization, and retrieval of intact acellular particles from biofluids. The chromatographic separation of particles from different biofluids—semen, blood, urine, milk, and cell culture supernatants—is achieved using a first-in-class gradient size exclusion column (gSEC). Purified particles are collected using a fraction collector. Online UV–Vis monitoring reveals biofluid-dependent particle spectral differences, with semen being the most complex. Turbidimetry provides the accurate physical characterization of seminal particle (Sp) lipid contents, sizes, and concentrations, validated by a nanoparticle tracking analysis, transmission electron microscopy, and naphthopyrene assay. Furthermore, different fractions of purified Sps contain distinct DNA, RNA species, and protein compositions. The integration of Sp physical and compositional properties identifies two archetypal membrane-encased seminal extracellular vesicles (SEV)—notably SEV large (SEVL), SEV small (SEVS), and a novel non-archetypal-membraneless Sps, herein named membraneless condensates (MCs). This study demonstrates a comprehensive yet affordable platform for isolating, collecting, and analyzing acellular particles to facilitate extracellular particle research and applications in drug delivery and therapeutics. Ongoing efforts focus on increased resolution by tailoring bead/column chemistry for each biofluid type.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Scott A. Longwell ◽  
Polly M. Fordyce

MicrIO is a low-cost, open-source hardware and software solution for automated sample input/output, bridging the gap between microfluidic devices and standard multiwell plates.


Sign in / Sign up

Export Citation Format

Share Document