Review of Feature Selection Algorithms for Breast Cancer Ultrasound Image

Author(s):  
Kesari Verma ◽  
Bikesh Kumar Singh ◽  
Priyanka Tripathi ◽  
A. S. Thoke
Author(s):  
Nazila Darabi ◽  
Abdalhossein Rezai ◽  
Seyedeh Shahrbanoo Falahieh Hamidpour

Breast cancer is a common cancer in female. Accurate and early detection of breast cancer can play a vital role in treatment. This paper presents and evaluates a thermogram based Computer-Aided Detection (CAD) system for the detection of breast cancer. In this CAD system, the Random Subset Feature Selection (RSFS) algorithm and hybrid of minimum Redundancy Maximum Relevance (mRMR) algorithm and Genetic Algorithm (GA) with RSFS algorithm are utilized for feature selection. In addition, the Support Vector Machine (SVM) and k-Nearest Neighbors (kNN) algorithms are utilized as classifier algorithm. The proposed CAD system is verified using MATLAB 2017 and a dataset that is composed of breast images from 78 patients. The implementation results demonstrate that using RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 85.36% and 75%, and sensitivity of 94.11% and 79.31%, respectively. In addition, using hybrid GA and RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 83.87% and 69.56%, and sensitivity of 96% and 81.81%, respectively, and using hybrid mRMR and RSFS algorithms for feature selection and kNN and SVM algorithms as classifier have accuracy of 77.41% and 73.07%, and sensitivity of 98% and 72.72%, respectively.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Nahla F. Omran ◽  
Sara F. Abd-el Ghany ◽  
Hager Saleh ◽  
Ayman Nabil

Twitter integrates with streaming data technologies and machine learning to add new value to healthcare. This paper presented a real-time system to predict breast cancer based on streaming patient’s health data from Twitter. The proposed system consists of two major components: developing an offline building model and an online prediction pipeline. For the first component, we made a correlation between the features to determine the correlation between features and reduce the number of features from the Breast Cancer Wisconsin Diagnostic dataset. Two feature selection algorithms are recursive feature elimination and univariate feature selection algorithms which are applied to features after correlation to select the essential features. Four decision trees, logistic regression, support vector machine, and random forest classifier have been used on features after correlation and feature selection. Also, hyperparameter tuning and cross-validation have been applied with machine learning to optimize models and enhance accuracy. Apache Spark, Apache Kafka, and Twitter Streaming API are used to develop the second component. The best model with the highest accuracy obtained from the first component predicts breast cancer in real time from tweets’ streaming. The results showed that the best model is the random forest classifier which achieved the best accuracy.


Author(s):  
Manpreet Kaur ◽  
Chamkaur Singh

Educational Data Mining (EDM) is an emerging research area help the educational institutions to improve the performance of their students. Feature Selection (FS) algorithms remove irrelevant data from the educational dataset and hence increases the performance of classifiers used in EDM techniques. This paper present an analysis of the performance of feature selection algorithms on student data set. .In this papers the different problems that are defined in problem formulation. All these problems are resolved in future. Furthermore the paper is an attempt of playing a positive role in the improvement of education quality, as well as guides new researchers in making academic intervention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


2021 ◽  
Vol 11 (15) ◽  
pp. 6983
Author(s):  
Maritza Mera-Gaona ◽  
Diego M. López ◽  
Rubiel Vargas-Canas

Identifying relevant data to support the automatic analysis of electroencephalograms (EEG) has become a challenge. Although there are many proposals to support the diagnosis of neurological pathologies, the current challenge is to improve the reliability of the tools to classify or detect abnormalities. In this study, we used an ensemble feature selection approach to integrate the advantages of several feature selection algorithms to improve the identification of the characteristics with high power of differentiation in the classification of normal and abnormal EEG signals. Discrimination was evaluated using several classifiers, i.e., decision tree, logistic regression, random forest, and Support Vecctor Machine (SVM); furthermore, performance was assessed by accuracy, specificity, and sensitivity metrics. The evaluation results showed that Ensemble Feature Selection (EFS) is a helpful tool to select relevant features from the EEGs. Thus, the stability calculated for the EFS method proposed was almost perfect in most of the cases evaluated. Moreover, the assessed classifiers evidenced that the models improved in performance when trained with the EFS approach’s features. In addition, the classifier of epileptiform events built using the features selected by the EFS method achieved an accuracy, sensitivity, and specificity of 97.64%, 96.78%, and 97.95%, respectively; finally, the stability of the EFS method evidenced a reliable subset of relevant features. Moreover, the accuracy, sensitivity, and specificity of the EEG detector are equal to or greater than the values reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document