On the Influence of Reynolds Number on the Mach Stem Height at Shock Reflection from a Circular Cylinder

Author(s):  
E. V. Timofeev ◽  
A. Hakkaki-Fard ◽  
H. Kleine ◽  
B. W. Skews
2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Author(s):  
Song-Guk Choe

The prediction of Mach stem height can be important in the design of supersonic intake in supersonic and hypersonic flows. It is also important because of the progress in aircraft and rocket engines. An analytical method of predicting the Mach stem height is necessary in theoretical field of shock reflection and is the basis of the comparable computational fluid dynamics (CFD) method. A method for predicting the Mach stem height in steady flows is performed based on the earlier models. In this article, an analytical model for predicting the Mach stem height is improved based on two main assumptions: one is the calculation of the triple point deflection angle when the Mach stem is an oblique shock and the other is about the shape of the free part of the slip line. Under these assumptions, the relations predicting of Mach stem height in two-dimensional steady flow are derived based on the advanced averaging method of the subsonic flow region. The Mach stem heights are decided solely for the incoming flow Mach numbers and the wedge angles by the improved analytical model. As a result, the Mach stem heights by the model of this article are found to agree well with experimental results at lower Mach numbers, but there are relative errors at higher Mach numbers. The convexity of the slip line is also considered.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2013 ◽  
Vol 736 ◽  
pp. 414-443 ◽  
Author(s):  
Y. Ueda ◽  
T. Kida ◽  
M. Iguchi

AbstractThe long-time viscous flow about two identical rotating circular cylinders in a side-by-side arrangement is investigated using an adaptive numerical scheme based on the vortex method. The Stokes solution of the steady flow about the two-cylinder cluster produces a uniform stream in the far field, which is the so-called Jeffery’s paradox. The present work first addresses the validation of the vortex method for a low-Reynolds-number computation. The unsteady flow past an abruptly started purely rotating circular cylinder is therefore computed and compared with an exact solution to the Navier–Stokes equations. The steady state is then found to be obtained for $t\gg 1$ with ${\mathit{Re}}_{\omega } {r}^{2} \ll t$, where the characteristic length and velocity are respectively normalized with the radius ${a}_{1} $ of the circular cylinder and the circumferential velocity ${\Omega }_{1} {a}_{1} $. Then, the influence of the Reynolds number ${\mathit{Re}}_{\omega } = { a}_{1}^{2} {\Omega }_{1} / \nu $ about the two-cylinder cluster is investigated in the range $0. 125\leqslant {\mathit{Re}}_{\omega } \leqslant 40$. The convection influence forms a pair of circulations (called self-induced closed streamlines) ahead of the cylinders to alter the symmetry of the streamline whereas the low-Reynolds-number computation (${\mathit{Re}}_{\omega } = 0. 125$) reaches the steady regime in a proper inner domain. The self-induced closed streamline is formed at far field due to the boundary condition being zero at infinity. When the two-cylinder cluster is immersed in a uniform flow, which is equivalent to Jeffery’s solution, the streamline behaves like excellent Jeffery’s flow at ${\mathit{Re}}_{\omega } = 1. 25$ (although the drag force is almost zero). On the other hand, the influence of the gap spacing between the cylinders is also investigated and it is shown that there are two kinds of flow regimes including Jeffery’s flow. At a proper distance from the cylinders, the self-induced far-field velocity, which is almost equivalent to Jeffery’s solution, is successfully observed in a two-cylinder arrangement.


Sign in / Sign up

Export Citation Format

Share Document