An Information Rate Improvement for a Polynomial Variant of the Naccache-Stern Knapsack Cryptosystem

Author(s):  
Giacomo Micheli ◽  
Joachim Rosenthal ◽  
Reto Schnyder
Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


Author(s):  
Mohd Javed ◽  
Khaleel Ahmad ◽  
Ahmad Talha Siddiqui

WiMAX is the innovation and upgradation of 802.16 benchmarks given by IEEE. It has numerous remarkable qualities, for example, high information rate, the nature of the service, versatility, security and portability putting it heads and shoulder over the current advancements like broadband link, DSL and remote systems. Though like its competitors the concern for security remains mandatory. Since the remote medium is accessible to call, the assailants can undoubtedly get into the system, making the powerless against the client. Many modern confirmations and encryption methods have been installed into WiMAX; however, regardless it opens with up different dangers. In this paper, we proposed Elliptic curve Cryptography based on Cellular Automata (EC3A) for encryption and decryption the message for improving the WiMAX security


Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 533
Author(s):  
Milan S. Derpich ◽  
Jan Østergaard

We present novel data-processing inequalities relating the mutual information and the directed information in systems with feedback. The internal deterministic blocks within such systems are restricted only to be causal mappings, but are allowed to be non-linear and time varying, and randomized by their own external random input, can yield any stochastic mapping. These randomized blocks can for example represent source encoders, decoders, or even communication channels. Moreover, the involved signals can be arbitrarily distributed. Our first main result relates mutual and directed information and can be interpreted as a law of conservation of information flow. Our second main result is a pair of data-processing inequalities (one the conditional version of the other) between nested pairs of random sequences entirely within the closed loop. Our third main result introduces and characterizes the notion of in-the-loop (ITL) transmission rate for channel coding scenarios in which the messages are internal to the loop. Interestingly, in this case the conventional notions of transmission rate associated with the entropy of the messages and of channel capacity based on maximizing the mutual information between the messages and the output turn out to be inadequate. Instead, as we show, the ITL transmission rate is the unique notion of rate for which a channel code attains zero error probability if and only if such an ITL rate does not exceed the corresponding directed information rate from messages to decoded messages. We apply our data-processing inequalities to show that the supremum of achievable (in the usual channel coding sense) ITL transmission rates is upper bounded by the supremum of the directed information rate across the communication channel. Moreover, we present an example in which this upper bound is attained. Finally, we further illustrate the applicability of our results by discussing how they make possible the generalization of two fundamental inequalities known in networked control literature.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 228
Author(s):  
Sze-Ying Lam ◽  
Alexandre Zénon

Previous investigations concluded that the human brain’s information processing rate remains fundamentally constant, irrespective of task demands. However, their conclusion rested in analyses of simple discrete-choice tasks. The present contribution recasts the question of human information rate within the context of visuomotor tasks, which provides a more ecologically relevant arena, albeit a more complex one. We argue that, while predictable aspects of inputs can be encoded virtually free of charge, real-time information transfer should be identified with the processing of surprises. We formalise this intuition by deriving from first principles a decomposition of the total information shared by inputs and outputs into a feedforward, predictive component and a feedback, error-correcting component. We find that the information measured by the feedback component, a proxy for the brain’s information processing rate, scales with the difficulty of the task at hand, in agreement with cost-benefit models of cognitive effort.


Sign in / Sign up

Export Citation Format

Share Document