Sum-Rate Improvement in Massive MIMO System with User Grouping and Selection, and Antenna Scheduling Scheme

Author(s):  
Tasher Ali Sheikh ◽  
Joyatri Bora ◽  
Md. Anwar Hussain
Author(s):  
Ankush Kansal ◽  
Pawandeep Singh

<p>In this paper, downlink multiuser-MIMO system with large number of transmitting antennas at the base station and R user terminals each having single antenna is considered. According to this design, an access point communicates with large number of users in the Rayleigh fading scenario. Due to large number of users, it becomes difficult to accommodate all of them in the system simultaneously. So, a user grouping technique known as K-mean clustering is used, such that a group of users with similar conditions at that particular time are served together. While making groups, the interference is surely reduced but the number of users being served at a time also reduces. So, it is necessary to make out the balance such that the performance of the system is maintained while accommodating maximum number of users. So, optimum number of user groups needs to be formed. The results show that when groups are increased from two till four sum rate increases but when five groups are made the sum rate decreases to a point but, is still higher than two groups.</p><p> </p>


2020 ◽  
Vol 116 (1) ◽  
pp. 455-474
Author(s):  
Tasher Ali Sheikh ◽  
Joyatri Bora ◽  
Md. Anwar Hussain

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


2014 ◽  
Vol 668-669 ◽  
pp. 1386-1390
Author(s):  
Ren Kai Yu ◽  
Jun Xuan Wang ◽  
You Ming Sun ◽  
Yang Liu

For this paper, we analyze the achievable sum rate of zero-forcing (ZF) pre-coding and Maximum Ratio Transmission (MRT) pre-coding with Matrix Normalization in massive MIMO system with Imperfect CSIT. We compare the performances of these two pre-codings and find that ZF pre-coding outperforming MRT pre-coding in the high SNR region while MRT pre-coding outperforming ZF pre-coding in the low SNR region. Then we derive the threshold of the pre-coding selection and provide the procedure of pre-coding schemes selection.


Author(s):  
Ambala Pradeep Kumar ◽  
Tadisetty Srinivasulu

Massive multiple-input multiple-output (MIMO) is considered to be an emerging technique in wireless communication systems, as it offers the ability to boost channel capacity and spectral efficiency. However, a massive MIMO system requires huge base station (BS) antennas to handle users and suffers from inter-cell interference that leads to pilot contamination. To cope with this, time-shifted pilots are devised for avoiding interference between cells, by rearranging the order of transmitting pilots in different cells. In this paper, an adaptive-elephant-based spider monkey optimization (adaptive ESMO) mechanism is employed for time-shifted optimal pilot scheduling in a massive MIMO system. Here, user grouping is performed with the sparse fuzzy c-means (Sparse FCM) algorithm, grouping users based on such parameters as large-scale fading factor, SINR, and user distance. Here, the user grouping approach prevents inappropriate grouping of users, thus enabling effective grouping, even under the worst conditions in which the channel operates. Finally, optimal time-shifted scheduling of the pilot is performed using the proposed adaptive ESMO concept designed by incorporating adaptive tuning parameters. The efficiency of the adaptive ESMO approach is evaluated and reveals superior performance with the highest achievable uplink rate of 43.084 bps/Hz, the highest SINR of 132.9 dB, and maximum throughput of 2.633 Mbps


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 49448-49455 ◽  
Author(s):  
Mengqian Tian ◽  
Jianing Zhang ◽  
Yu Zhao ◽  
Lianjun Yuan ◽  
Jie Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document